

Contents

Overview	6
OCNS - The Organization	7
Timetable	9
General Information	10
Meeting venues	10
Getting to the conference	12
Information for poster presentations	14
Registration and locations	15
Local Information	16
Gala Dinner	18
	20
	22
	25
olgino	20
Program	27
	28
Main Meeting	29
Workshops	
	-
Abstracts	36
Tutorials	37
Invited Presentations	44
Contributed Talks	46
Workshops	74
Posters	87
Poster Listing	88
P1 - P145	88
P146 - P287	106
	24
Page Index	125

We are grateful to the following organizations for their support without which none of this would be possible:

ALLEN INSTITUTE

ARC Centre of Excellence for Integrative Brain Function

Overview

Organization for Computational Neurosciences (OCNS)

2018 Board of Directors

- President: Astrid Prinz (Emory University, Atlanta, USA).
- Vice-President and Secretary: Sharon Crook (Arizona State University, Tempe, USA).
- Past President: Erik De Schutter (OIST, Japan & University Antwerp, Belgium).
- Treasurer: Volker Steuber (University Hertfordshire, UK).
- Past Treasurer: Victoria Booth (University Michigan, Ann Arbor, USA).
- CNS Program Chair: Thomas Nowotny (University of Sussex, UK).
- CNS Publications Chair: Ingo Bojak (University of Reading, UK).
- CNS Sponsorship Chair: Michele Giugliano (University of Antwerp, Belgium).
- CNS Sponsorship Chair Assistant: William Lytton (SUNY Downstate, Brooklyn, USA).
- OCNS Website Administrator: Pierre Yger (Institut de la Vision, Paris, France).
- Local Org. Committee Rep. CNS 2017: Daniele Marinazzo (Ghent University, Belgium).
- Local Org. Committee Rep. CNS 2018: Eric Shea-Brown (University of Washington, Seattle, USA).
- Local Org. Committee Rep. CNS 2019: Alex Roxin (Centre de Recerca Matemàtica, Barcelona, Spain).
- CNS Tutorials Organizer: Hermann Cuntz (ESI and FIAS, Franfurt/Main, Germany).
- CNS Workshop Organizer: Martin Zapotocky (Czech Academy of Sciences, Prague, Czech Republic).
- Social Media Chair: Joanna Jedrzejewska-Szmek (University of Warsaw, Warsaw, Poland).
- CNS Registration Organizer: Leonid Rubchinsky (Indiana University, Indianapolis, USA).
- CNS Travel Awards: Taro Toyoizumi (RIKEN Brain Science Institute, Saitama, Japan).
- OCNS Member Approval: Maurice Chacron (McGill University, Montreal, Canada).

2018 Program Committee

- CNS Program Chair: Thomas Nowotny (University of Sussex, UK).
- CNS Publication Chair: Ingo Bojak (University of Reading, UK).
- Sacha van Albada (Research Centre Jülich, Germany).
- Maxim Bazhenov (University of California San Diego, USA).
- Cliff Kerr (University of Sydney, Australia).
- Tomoki Fukai (Riken University, Japan).
- Dieter Jaeger (Emory University, Atlanta, USA).
- Arvind Kumar (KTH Royal Institute of Technology, Stockholm, Sweden).
- Sukbin Lim (NYU Shanghai, China).
- Christoph Metzner (University of Hertfordshire, UK).
- Yaroslav Molkov (Indiana University Purdue University, Indianapolis, USA).
- Tatyana Sharpee (Salk Institute, San Diego, USA).
- Tatjana Tchumatchenko (Max Planck Institute for Brain Research, Frankfurt/Main, Germany).

2018 Local Organizers

- Christof Koch (Allen Institute for Brain Science, Seattle, USA).
- Adrienne Fairhall (University of Washington, Seattle, USA).
- Eric Shea-Brown (University of Washington, Seattle, USA).

Fundraising

OCNS, Inc is a US non-profit, 501(c)(3) serving organization supporting the Computational Neuroscience community internationally. We seek sponsorship from corporate and philantropic organizations for support of student travel and registration to the annual meeting, student awards and hosting of topical workshops. We can also host booth presentations from companies and book houses. For further information on how you can contribute please email http://sponsorship@cnsorg.org.

Timetable

	TUTORIALS		MAIN MEETING		WOR	(SHOPS
	Friday, July 13th	Saturday, July 14th	Sunday, July 15th	Monday, July 16th	Tuesday, July 17th	Wednesday, July 18th
	Allen Institute	UW HUB	UW HUB	UW HUB	Allen Institute	Allen Institute
	(UW Medicine/ MOHAI)		(Fremont Foundry)	(Seattle Yacht Club)	(UW Medicine/MOHAI)	(UW Medicine)
8:00	Registration Opens	Registration Opens	Registration Opens	Registration Opens	Registration Opens	Registration Opens
9:00		Announcements	Announcements	Announcements		
9:10						
9:30		Keynote 2	Keynote 3	Keynote 4		
		Rajesh Rao	Nancy Kopell	Eve Marder		
10:00						
10:10	TUTORIALS				WORKSHOPS	WORKSHOPS
	Morning Session	Break	Break	Break	Morning Session	Morning Session
10:40						
		ORAL SESSION 1	ORAL SESSION 3	ORAL SESSION 5		
		Visual System	Brain Dynamics	Insect Sensory Systems		
			in Health and Disease			
12:00						
12:30	Lunch Break	Lunch Break	Lunch Break	Lunch Break		
					Lunch Break	Lunch Break
13:30						
14:00				OCNS Member Meeting		
14:20		ORAL SESSION 2	ORAL SESSION 4			
		Large-scale	Oscillations			
		Network Dynamics	and Waves	ORAL SESSION 6		
		-		Hippocampus Models		
14:50	TUTORIALS			t i i i i i i i i i i i i i i i i i i i		
15:00	Afternoon Session	Break	Break			
	-			Break		
15:20					WORKSHOPS	WORKSHOPS
					Afternoon Session	Afternoon Session
				ORAL SESSION 7	-	-
				Advances in		
		POSTER SESSION 1	POSTER SESSION 2	Neuronal Modelig		
16:30		P1 - P145	P146 - P287	_		
17:00	Welcome	(Drinks and snacks)	(Drinks and snacks)			
17:10						
17:30	Keynote 1					
	Daniel Wolpert			Travel to Banquet		
18:00						
18:10	Appreciation of Wilfrid Rall					
18:30						
19:00	Welcome Reception					
	6:30-8:30pm		Dinner on your Own	Banquet Dinner		
19:30	мона		Travel to Party	6:30-10pm		
20:00				Seattle Yacht Club		
			CNS PARTY			
			8:00-11:00pm			
			Fremont Foundry			
				•		

General Information

Meeting venues

Allen Institute 615 Westlake Ave N, Seattle, WA, 98109

University of Washington Husky Union Building 4001 E Stevens Way NE, Seattle, WA 98195

The Allen Institute and University of Washington are thrilled to be hosting CNS 2018 in Seattle. Founded in 2003 by Paul G. Allen, the Allen Institute has expanded from its initial pursuit of understanding the brain to encompass an investigation of the inner workings of cells and the funding of transformative scientific ideas around the world. The Allen Institute for Brain Science is a division of the Allen Institute and is dedicated to accelerating the understanding of how the human brain works in health and disease. Using a big science approach, the Allen Institute generates useful public resources used by researchers and organizations around the globe, drives technological and analytical advances, and discovers fundamental brain properties through integration of experiments, modeling and theory. The Allen Institute for Brain Science's data and tools are publicly available online at brain-map.org.

The University of Washington is a national leader in computational neuroscience, with award-winning research underway across the full spectrum of scales, mechanisms, and functions of the brain. Topics range from ion channel stochasticity in auditory processing to insect flight control to human/computer interfaces. Faculty members' interests span many areas of theory, computation and data analysis and interact extensively with colleagues in quantitative experimentation and imaging. The new UW Computational Neuroscience Center capitalizes on this strength, along with the UW Institute for Neuroengineering (UWIN) and the Center for Sensorimotor Neural Engineering (CSNE).

Tutorials and workshops locations:

Tutorials and workshops will be held at the Allen Institute, University of Washington Medicine - South Lake Union (UW Medicine SLU), and the Museum of History and Industry (MOHAI). Check in at the Allen Institute lobby before proceeding to all workshops and tutorials. Allow 10 minutes to walk from the Allen Institute to tutorial/workshop rooms in both UW Medicine SLU and MOHAI.

Ask at check in for the room number for each workshop and tutorial.

Please bring your conference badge to tutorials, workshops, and all other conference events.

From Sea-Tac Airport:

From the airport (SeaTac), the lowest cost and often fastest method of getting to Downtown or UW area is to take the light rail to downtown or to the UW station. Please check where your hotel is relative to the stations so you know your walk distance or if you need to call an Uber or Lyft. From the UW station you can walk a short distance (15-20 minutes) to the dorms or 25 minutes to the recommended hotels in the University District. The bus lines number 44 or 45 from the UW station will take you to the 45th and Roosevelt area of the University District, where the conference hotels are located.

The cost to ride light rail from the airport to either stations runs from \$2.50 to \$4 per person depending on how far you travel. A taxi or Uber from the airport can run from \$55 to \$75 per ride depending on traffic, and may take an hour during peak travel times.

Shuttle Express is a 24 hour service. Shuttle Express does pick ups and drop offs 24 hours a day. We highly suggest reservations from the airport; however, walk ups are taken. Rates are from \$19.00 one way, per person.

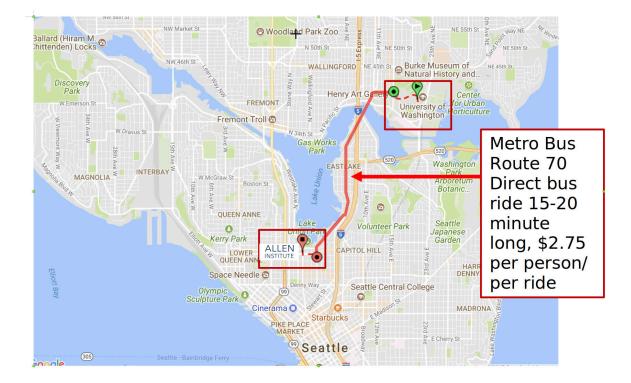
TIP: There may be a wait, both with or without a reservation, at the airport as they wait to ensure they have enough people on board to justify making the trip to Seattle. Sometimes this can take a while, however, sometimes there is little to no wait depending on the time of day.

You may either book online www.shuttleexpress.com with Shuttle Express or call them at 425-981-7000.

Between the University of Washington and the Allen Institute:

There is a direct bus line that runs between University of Washington and Allen Institute (metro bus # 70). The bus ride takes about 15-20 minutes and costs \$2.75 a ride. You must have exact change; no change is made on the bus. You may also buy a transit card (Orca Card) at any light rail station vending machine. It can be loaded with cash or a credit card. You can plan your bus trip here <u>https://tripplanner.kingcounty.gov/hiwire</u> with departure and arrival times.

Parking is very limited at both the Allen Institute and University of Washington, and it is recommended to not drive if possible. For parking destinations near the Allen Institute, see:


https://seattle.bestparking.com/neighborhoods/south-lake-union-parking.

The best parking garage at the University of Washington is the Padelford garage, located off Pend Orielle Rd. Pay station parking is located on the lower levels.

The tutorials and workshops will be held at the Allen Institute, UW Medicine South Lake Union, and MOHAI. After checking in at the Allen Institute, you will be directed two blocks to UW Medicine South Lake Union or one block to MOHAI.

Seattle also offers two bike share companies with bikes located in various parts of the city, it is usually very easy to find an available bike. You can find the bike share information below: download their applications to create an account used to pay for bike time and find bikes. Lime bikes https://www.limebike.com/

Ofo bikes http://ofo.com/

Welcome, first keynote, and reception:

The Welcome remarks and first keynote will be held on Friday July 13 at 5pm at the Allen Institute auditorium. **Please plan to arrive early if you wish to ensure a seat in the auditorium.** Overflow seating in rooms with a live video stream of the presentation will be located in other rooms in the Allen Institute.

The welcome reception will follow the keynote and will take place at MOHAI, located just one block from the Allen Institute. Attendees who do not attend the keynote may check in at MOHAI. Attendees who attended tutorials and/or the keynote should be sure to bring their conference badges.

Information for poster presentations:

The poster presentations will be held in the HUB Ballroom, located one floor above the main meeting room. Poster boards will be numbered. Pins will be provided.

Poster sessions will be held on July 14 and 15 at 3:20-7pm. Presenters are expected to be at the session until at least 6pm. The hall will be available starting at 1pm on both days for presenters to set up posters.

Posters should be removed promptly at the end of the poster session on both days. Presenters who leave before 7pm should take their posters with them at that time.

Please leave pins on poster boards at the end of the session.

Posters that are not removed by the end of the day of the session will be discarded. The organizers are not responsible for loss or damage to posters not removed by their owners.

On the days of the main meeting, registration will be held in the University of Washington Husky Union Building (HUB) at the Lyceum, the primary meeting room.

On the days of the tutorials and workshops, registration will be held in the lobby of the Allen Institute, including for tutorials and workshops being held in neighboring buildings.

For those not attending the tutorials or opening keynote, registration at the Welcome Reception will also be available.

Registration hours:

Friday July 13, at the Allen Institute: 8 am to 5 pm Friday July 13, at the Welcome Reception at MOHAI: 6 pm to 8 pm Saturday July 14, at the UW HUB Lyceum: 8 am to 4 pm Sunday July 15, at the UW HUB Lyceum: 8 am to 4 pm Monday July 16, at the UW HUB Lyceum: 8 am to 4 pm Tuesday July 17, at the Allen Institute: 8 am to 4 pm Wednesday July 18, at the Allen Institute: 8 am to 4 pm

Please bring your conference badge to all conference events, including offsite social events.

Good to Know

Travel tips for Seattle are available at https://www.visitseattle.org/.

Official Language

The official language of the meeting is English. Interpreting is not provided.

Insurance

The organizers do not accept responsibility for individual medical, travel or personal insurance. All participants are advised to take out their own personal insurance before traveling to Seattle.

Currency & Banking

Exchange of foreign currency is available at airports and at most hotels and banks throughout the city. International credit cards are accepted for payments in hotels, restaurants and shops. An increasing number of locations, especially small restaurants and food carts, are cashless.

Electricity

The US uses a 120 volt 60 Hz system. Travelers from outside of North America will likely require socket and/or voltage converters.

Shopping

Most stores in Seattle are open from 8am to 8pm. Some stores may open later on Sundays. A large shopping center called University Village with a grocery store, drugstore, and many other shops and restaurants is located approximately 0.5mi east of the main meeting location on the UW campus.

Time Zone

Seattle is on Pacific Daylight Time in July (GMT-7). Seattle is the northernmost city of over 1 million people in the United States, so days are long in summer. During the meeting, sunrise will be around 5:30am and sunset will be around 9pm.

Tipping

Gratuities are usually not automatically included in the bill in most bars and restaurants, but especially for groups larger than 6, an automatic gratuity may be applied. Standard tip is 18-20%.

Get around by public transportation

Seattle has an extensive bus network and a light rail that travels directly from the airport to downtown and the University of Washington. Bus fares can be paid in cash with exact change (\$2.75, no matter what bus route or distance traveled) or with an Orca Card transit pass, which can be bought and loaded with fares at any light rail station. You can plan your bus trip here <u>https://tripplanner.kingcounty.gov/hiwire</u> with departure and arrival times. You can transfer between bus routes without paying a second fare within 2 hours of boarding the first bus.

By bike

Seattle also offers two bike share companies with bikes located in various parts of the city, it is usually very easy to find an available bike. You can find the bike share information below: download their applications to create an account used to pay for bike time and find bikes.

Lime bikes https://www.limebike.com/ Ofo bikes http://ofo.com/

By car

Parking is limited at both the Allen Institute and the University of Washington. For the Allen Institute and surrounding activities, see <u>https://seattle.bestparking.com/neighborhoods/south-lake-union-parking</u> for parking locations. At the University of Washington, proceed to the Padelford parking garage, accessed from Pend Orielle Rd, and use the pay stations on the lower levels as directed.

On foot

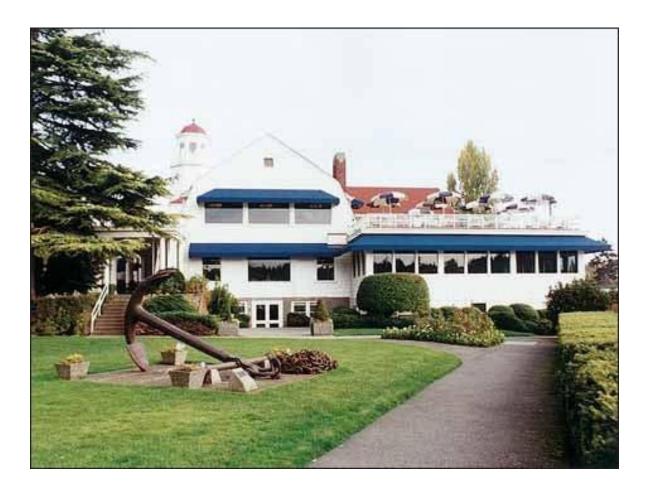
Many fun activities, interesting sights, and local restaurants are within walking distance of all conference venues. Recommended restaurants for each primary location are listed below.

The University District hotels are within walking distance of the main meeting location at the Husky Union Building. Ask at the hotel desk for a campus and neighborhood map.

Weather

July is the warmest month in Seattle. The average high is around 75F/24C and low around 55F/12C. Rain is relatively rare in July, but be prepared for surprise storms rolling in from Puget Sound.

Free Wifi

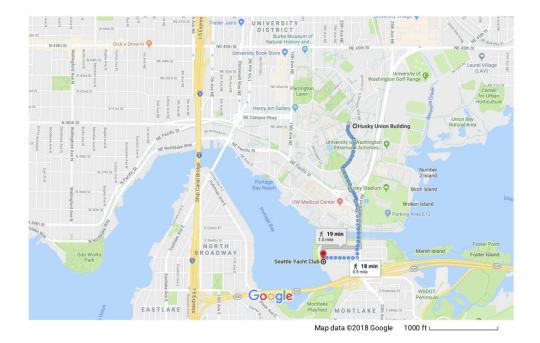

Wifi is provided at the meeting venues. The University of Washington main campus (HUB) and UW Medicine South Lake Union will have the same wifi login information. The Allen Institute has its own separate wifi. See the registration desk for each venue for the login information.

Car Services

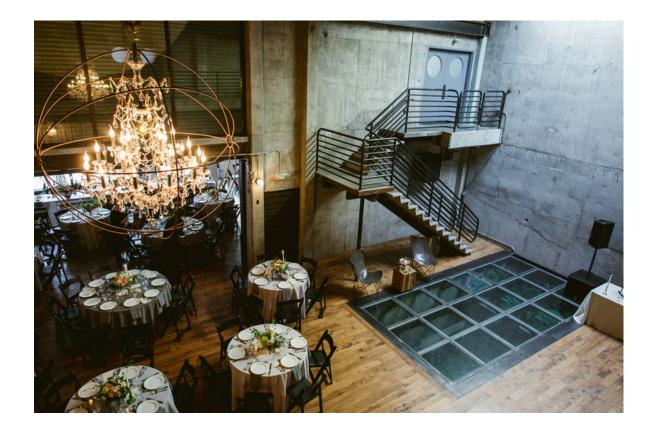
Taxis are available, but they can be quite expensive and congestion between the University District hotels and the Allen Institute is severe. Traveling by car during rush hour is not recommended.

Uber and Lyft are available throughout the city. Traveling by public transportation or on foot in the University District, especially around University Avenue between 43rd and 50th, is not recommended after dark.

Gala Dinner

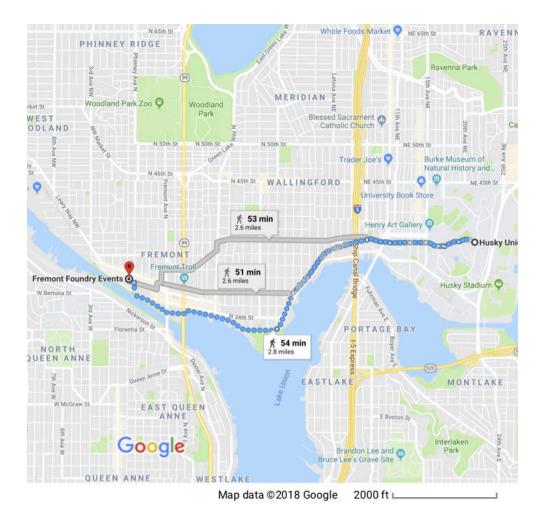


Date: Monday, July 16, 2018 Time: 6:30pm PM Venue: Seattle Yacht Club, 1807 E Hamlin St, Seattle, WA 98112 <u>https://www.seattleyachtclub.org/</u> Recommended dress code: Casual


How to get there: The best way to get to the Seattle Yacht Club from the main meeting venue at the University of Washington Husky Union Building is on foot or by bike. The distance is 1 mile and is entirely downhill or flat. For those who choose to bike, bike shares are generally abundant on campus. Conference staff will lead walking groups from the main meeting location at the HUB to the Yacht Club, departing from the registration desk between 5:30 and 6:00 pm.

The bike and pedestrian route travels through part of the University of Washington campus, down the Rainier Vista quad with panorama views of the Cascade Mountains and especially Mount Rainier, across the historic Montlake Bridge, and into the Montlake neighborhood.

There are no public transit routes that travel directly between those locations. Montlake Avenue and the Montlake Bridge are generally extremely congested at that time of day, so car share services will be time consuming.


CNS Party

Date: Sunday, July 15, 2018 Time: 8:00 PM Venue: Fremont Foundry, 154 N 35th St, Seattle, WA 98103 Recommended dress code: Casual

The CNS Party will be held at the Fremont Foundry. Originally an artists' metal-working foundry, it was converted to an event space for parties, weddings, and other events.

Fremont is about 3 miles from the University of Washington. It can be reached from the University of Washington Husky Union Building and from the University District hotel area via the #31 or #32 bus lines (approximately 30 minutes travel), by carshare services (approximately 15 minutes travel), or by bikeshare services (20 minutes travel, all flat or downhill) via a protected mixed-use bike pedestrian trail. Pedestrians can also use the mixed-use trail. Plan to eat dinner before the party, as only light refreshments and drinks will be provided. Recommended restaurants for dinner near the party are listed below.

Restaurants

Reservations are recommended for groups larger than 6 at most restaurants in Seattle. Most restaurants in Seattle have vegetarian options.

Restaurants near the University of Washington in the University Village shopping area:

Ba Bar Vietnamese \$\$ http://babarseattle.com/university-village/

Elemental pizza Wood-fired pizza \$\$ https://elementalpizza.com/

Evergreens Salads \$ http://evergreens.com/

Rachel's Ginger Beer with Ma'ono Fried Chicken Ginger beer and cocktails, fried chicken \$ https://rachelsgingerbeer.com/pages/university-village

Eureka Burgers and pub food, extensive tap list \$\$ http://eurekarestaurantgroup.com/eat/

Molly Moon's Ice cream \$ http://www.mollymoon.com/

For a full list of University Village restaurants, see https://uvillage.com/directory/

Selected restaurants near the University of Washington in the the University District hotel area:

U:Don Udon and tempura bar \$ https://freshudon.com/

Chili's South Indian \$ lunch, \$\$ dinner http://chilissouthindianrestaurant.com/

Big Time Brewery Pub food, beer brewed on site \$\$ http://bigtimebrewery.com/

Agua Verde Homestyle Mexican, view of lake \$ lunch, \$\$ dinner http://aguaverde.com/cafe/

Cafe Allegro Coffee \$ https://seattleallegro.com/

Cafe Solstice Coffee, sandwiches, beer (evening) \$ https://www.cafesolsticeseattle.com/u-district/

For more recommendations, see http://www.cnsorg.org/cns-2018-local-info and scroll down to the map.

Selected restaurants near the Allen Institute, UW Medicine South Lake Union, and MOHAI:

Uptown Espresso Coffee \$

100 Pound Clam Seafood \$\$ http://www.100poundclam.com/

El Chupacabra Mexican, view of lake \$ to \$\$ http://www.elchupacabraseattle.com/menu/food/

Ballard Pizza Co Pizza \$\$ http://www.ballardpizzacompany.com/

Portage Bay Cafe Brunch \$\$ https://www.portagebaycafe.com/

Many food trucks are located around South Lake Union. Head south (away from the lake) on any road and you will probably find one!

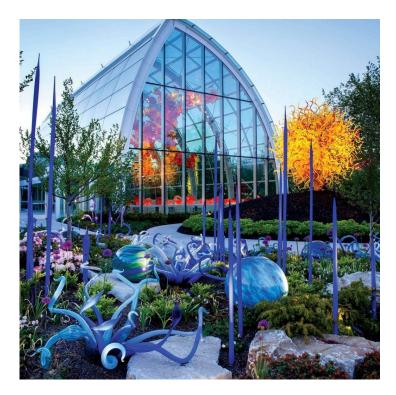
Note that the Allen Institute Cafe is accessible to employees only.

For more recommendations, see http://www.cnsorg.org/cns-2018-local-info and scroll down to the map.

Selected restaurants near the Fremont Foundry:

Agrodolce Southern Italian \$\$ The Red Door Gastropub \$\$ http://reddoorseattle.com/

Rock Creek Seafood and Spirits Seafood, modern NW \$\$\$ http://rockcreekseattle.com/


Dumpling Tzar Dumplings \$ http://dumplingtzar.com/

Cafe Turko Turkish \$\$ http://cafe-turko.com/

Manolin Seafood \$\$ http://www.manolinseattle.com/menu-2/ The CNS locations circle Lake Union, located in the center of Seattle. Getting around the conference provides an opportunity to travel the city and see some sights!

The top tourist destination in Seattle is Pike Place Market, which is home to many small restaurants, food stands, shops, artisans, and the famous fish-tossing seafood market. Weekday mornings are likely to be the least crowded.

Other popular destinations include the Space Needle, located in Seattle Center, Kerry Park (the "Frasier" view), boating on Lake Union, and central neighborhoods including Capitol Hill, Fremont, Wallingford, Ballard, the University District, and more.

The University District farmer's market is about half a mile from campus and is held from 9-1 on Saturday mornings. It is the largest farmer's market in the state and has an abundance of locally grown produce, small artisan food companies, and ready-to-eat lunch bites.

See more recommendations for touring and sights:

General top destinations: https://www.visitseattle.org/ or https://www.buzzfeed.com/ariannaodell

Near the University of Washington: https://www.visitseattle.org/neighborhoods/university-district/

Near the Allen Institute: <u>https://www.google.com/search?q=south+lake+union&ie=utf-8&client=firefox-b-1-ab</u> Nearest the Fremont Foundry: <u>https://fremont.com/</u>

Near the Fremont Foundry: https://www.fodors.com/world/north-america/usa/washington/seattle/neighborhoods/ballard

Program

Tutorials

T1Allen Institute Brain Observatory and Brain Modeling Toolkit tutorial
Allen Institute Training Room, Friday July 13, 09:00 - 16:30

Yazan Billeh, Allen Institute, USA Sergey Gratiy, Allen Institute, USA Saskia E. J. de Vries, Allen Institute, USA

- T2 Multiscale modeling from molecular level to large network level Allen Institute Auditorium, Friday July 13, 09:00 - 16:30 Salvador Dura-Bernal, SUNY Downstate, USA Robert McDougal, Yale University, USA William Lytton, SUNY Downstate, USA
- T3 Simulation of large-scale neural networks
 UW Medicine SLU Brotman Auditorium, Friday July 13, 09:00 16:30
 <u>Sacha J. van Albada</u>, Julich Research Centre and JARA, Germany
 Philipp Weidel, Julich Research Centre and JARA, Germany
- T4 Neuroinformatics resources for computational modelers Allen Institute 288/289, Friday July 13, 09:00 - 12:00
 Padraig Gleeson, University College London, UK
- Modeling and analysis of extracellular potentials
 Allen Institute 286/287, Friday July 13, 09:00 12:00
 <u>Gaute Einevoll</u>, Norwegian University of Life Sciences & University of Oslo, Norway
 <u>Espen Hagen</u>, Dept. of Physics, University of Oslo, Norway
- T6 Single cell RNA-seq analysis for transcriptomic type characterization Allen Institute 286/287, Friday July 13, 13:30 - 16:30
 Zizhen Yao, Allen Institute, USA
 Lucas Graybuck, Allen Institute, USA

Room assignments are subject to change. Please check with registration in the Allen Institute lobby for the final room assignments for tutorials.

Main Meeting

	Friday July 13
8:00 - 17:00	Registration (Allen Institute)
9:00 – 16:30	Tutorials (Allen Institute & nearby UW Medicine at South Lake Union)
17:00 – 17:10	Welcome and Announcements (Allen Institute)
17.10 – 18:10 K1	Keynote 1: <i>Probabilistic models of sensorimotor control and decision making</i> Daniel Wolpert
18:10 – 18:30	Appreciation of Wilfrid Rall
18:30 – 20:30	Welcome Reception/Registration (nearby Museum of History and Industry (MO-HAI))

Saturday July 14

8:00 - 9:00	Registration (University of Washington, Husky Union Building Lyceum, First Floor)
9:00 - 9:10	Announcements
9:10–10:10 K2	Keynote 2: <i>The Bayesian brain: from predictive coding to decision making</i> Rajesh Rao
10:10 - 10:40	Break
	Oral Session I: Visual System
10:40 – 11:20 F1	Featured Oral 1: <i>Predictive computations in the primary visual cortex</i> Jan Homann*, Michael Berry, Sue-Ann Koay, Alistair M. Glidden, and David W. Tank
11:20 – 11:40 O1	<i>Generative model of visual cortex with short- and long-range recurrent interactions</i> Federica Cappareli*, Klaus Pawelzik, David Rotermund, and Udo Ernst
11:40 – 12:00 O2	Info in a bottleneck: exploring the compression of visual information in the retina Gabrielle Gutierrez*, Eric Shea-Brown, and Fred Rieke
12:00 - 13:30	Lunch Break

Oral Session II: Large-scale Network Dynamics

13:30 – 13:50	O3	Structural and dynamical properties of local cortical networks result from robust associative learning Danke Zhang, Chi Zhang, and Armen Stepanyants*
13:50 – 14:10	O4	Reduced models of an attractor neural network's response to conflicting external inputs Kathryn Hedrick*
14:10 – 14:30	O5	Topologies of repetitive functional network motifs vary dynamically with age in the developing human brain: Evidence from very high-dimensional invasive brain signals Caterina Stamoulis [*] , Phillip Pearl
14:30 – 14:50	O6	Revealing principles of cortical computation using the Allen Brain Observatory: A large, standardized calcium imaging dataset from the mouse visual cortex Michael A. Buice, Saskia E. J. de Vries [*] , Gabriel Ocker, Michael Oliver, Peter Ledochow- itsch, Daniel Millman, Eric Shea-Brown, Christof Koch, Jianghong Shi, and R Clay Reid
14:50 – 15:20		Break
15:20 – 19:00		Poster Session 1 (Posters 1 - 145) (University of Washington, Husky Union Building North Ballroom, Second Floor (Drinks and Snacks Provided))

Sunday July 15

8:00 – 9:00	Registration (University of Washington)	, Husky Union Building Lyceum, First	Floor)
-------------	---	--------------------------------------	--------

- 9:00 9:10 **Announcements**
- 9:10 10:10 K3 Keynote 3: *Coordination, modulation and functional implications of brain rhythms* Nancy Kopell
- 10:10 10:40 Break

Oral Session III: Brain Dynamics in Health and Disease

10:40 - 11:20	F2	Featured Oral 2:
		Response to deep brain stimulation in essential tremor: predictions beyond noisy data with a Wilson-Cowan model
		Benoit Duchet*, Gihan Weerasinghe, Christian Bick, Hayriye Cagnan, and Rafal Bogacz
11:20 – 11:40	07	<i>Characterization of the brain's dynamical repertoire in the psychedelic state</i> Louis-David Lord*, Paul Expert, Robin Carhart-Harris, Morten Kringelbach, and Joana Cabral
11:40 - 12:00	O8	Understanding the bispectrum as a measure of cross-frequency coupling Christopher Kovach*

12:00 - 13:30		Lunch Break
		Oral Session IV: Oscillations and Waves
13:30 – 13:50	O9	Spinal interneurons and locomotor speed and gait control in quadrupeds Ilya Rybak*, Simon Danner, and Natalia Shevtsova
13:50 – 14:10	O10	A simplified model of network bursts in the pre-Botzinger complex Yury Sokolov*, Jonathan Rubin
14:10 – 14:30	O11	<i>Traveling waves in single cortical regions: mechanisms and emerging computa- tional principles</i> Lyle Muller*, Terrence Sejnowski
14:30 – 14:50	O12	<i>Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocam- pus</i> Daniel Levenstein*, György Buzáki, and John Rinzel
14:50 – 15:20		Break
15:20 – 19:00		Poster Session II (Posters 146 - 287) (University of Washington, Husky Union Build- ing North Ballroom, Second Floor (Drinks and Snacks Provided))
19:00 - 20:00		Break (Time Allocated for Dinner and Travel to Party)
20:00 - 23:00		CNS Party (Fremont Foundry, 154 North 35th Streeet, Seattle)

Monday July 16

8:00 – 9:00	Registration (University of Washington, Husky Union Building Lyceum, First Floor)
9:00 – 9:10	Announcements
9:10 – 10:10 K4	Keynote 4: Differential resilience to perturbation of circuits with similar performance Eve Marder
10:10 – 10:40	Break
	Oral Session V: Insect Sensory Systems
10:40 – 11:20 F3	Featured Oral 3: <i>A molecular odorant transduction model and combinatorial encoding in the</i> <i>Drosophila Antennae</i> Aurel A. Lazar, Chung-Heng Yeh*
11:20 – 11:40 O13	<i>Biological mechanisms for learning: A computational model of olfactory learning in the Manduca sexta moth</i> Charles Delahunt*, Jeffrey Riffell, and J. Nathan Kutz

- 11:40 12:00 O14 *Modeling of TRP channel mediated noxious cold sensation in Drosophila sensory neurons* Natalia Maksymchuk*, Atit Patel, Nathaniel Himmel, Daniel Cox, and Gennady Cymbalyuk
- 12:00 13:30 Lunch Break
- 13:30 14:20 OCNS Member Meeting (University of Washington, Husky Union Building Lyceum, First Floor)

Oral Session VI: Hippocampus Models

- 14:20 14:40 O15 *A geometric attractor mechanism for the self-organization of entorhinal grid modules* Louis Kang*, Vijay Balasubramanian
- 14:40 15:00 O16 *Simulating in vivo context-dependent recruitment of CA1 hippocampal interneuron specific 3 (IS3) interneurons* Alexandre Guet-McCreight*, Frances Skinner
- 15:00 15:20 Break

Oral Session VII: Advances in Neuronal Modeling

- 15:20 15:40 O17 Quantitative simplification of detailed microcircuit demonstrates the limitations to common point-neuron assumptions Christian A Rössert, Giuseppe Chindemi, Andrew Davison, Dimitri Rodarie, Nicolas Perez Nieves, Christian Pozzorini, Csaba Eroe, James King, Taylor Newton, Max Nolte, Srikanth Ramaswamy, Michael Reimann, Willem Wybo, Marc-Oliver Gewaltig, Wulfram Gerstner, Henry Markram, Idan Segev, and Eilif Muller* 15:40 - 16:00 O18 A novel synaptic plasticity rule for detailed model neurons with realistic dendrites Christian Ebner, Claudia Clopath, Peter Jedlicka*, and Hermann Cuntz 16:00 – 16:20 O19 Assisted construction of hybrid circuits: making easy the implementation and automation of interactions between living and model neurons Manuel Reyes-Sanchez, Irene Elices Ocon*, Rodrigo Amaducci, Francisco B Rodriguez, and Pablo Varona Deciphering the evolutionary route to the first neurons 16:20 – 16:40 O20 Oltman de Wiljes*, Ronald van Elburg, and Fred Keijzer 16:40 – 17:00 O21 Community models as the ultimate objective (and success) of computational neu-
- *roscience: exempli gratia: The cerebellar Purkinje cell* James Bower*
- 17:00 18:30 Break (Time Allocated for Travel to Banquet)
- 18:30 21:00 CNS Banquet (Seattle Yacht Club, 1807 E Hamlin St., Seattle)

Tuesday July 17 and Wednesday July 18

Workshops (Allen Institute & nearby MOHAI, UW Medicine at South Lake Union)

- 9:00 12:30 Workshop Morning Session
- 12:30 14:00 Break for Lunch
- 14:00 18:00 Workshop Afternoon Session

Workshops

W1 Methods of Information Theory in Computational Neuroscience Allen Institute Auditorium, Tue July 17 and Wed July 18, 9:00 to 18:00 Joseph T. Lizier, University of Sydney <u>Viola Priesemann</u>, Max Planck Institute for Dynamics and Self-organisation <u>Justin Dauwels</u>, Nanyang Technological University <u>Taro Toyoizumi</u>, RIKEN Brain Science Institute <u>Alexander G Dimitrov</u>, Washington State University <u>Lubomir Kostal</u>, Czech Academy of Sciences <u>Michael Wibral</u>, Goethe University, Frankfurt

- W2 Neuronal morphology and structure Allen Institute 286/287, Tue July 17, 9:00 to 18:00 <u>Alexander Bird</u>, Ernst Strüngmann Institute and FIAS, Frankfurt <u>André Castro</u>, Ernst Strüngmann Institute and FIAS, Frankfurt <u>Hermann Cuntz</u>, Ernst Strüngmann Institute and FIAS, Frankfurt
- W3 Bridging Spatial and Temporal Scales in Brain Connectomics MOHAI - Microsoft Lakefront Pavilion, Tue July 17, 9:00 to 18:00
 <u>Katharina Glomb</u>, Lausanne University Hospital Joana Cabral, Oxford University
- W4 Models for Perceiving and Learning Time Intervals and Rhythms Allen Institute Training Room, Tue July 17, 9:00 to 18:00
 <u>Áine Byrne</u>, New York University <u>John Rinzel</u>, New York University <u>Amitabha Bose</u>, New Jersey Institute of Technology
- W5 Developing, Standardising, and Sharing Large Scale Network Simulations Allen Institute 288/289, Tue July 17, 9:00 to 12:30
 Padraig Gleeson, University College London
- W6 Neuroscience Gateway and Large Scale Neural Systems Simulations and Tools Allen Institute 288/289, Tue July 17, 14:00 to 18:00
 <u>Amit Majumdar</u>, University of California San Diego
 <u>Subhashini Sivagnanam</u>, University of California San Diego
 <u>Ted Carnevale</u>, Yale University
- W7 Dynamics of Rhythm Generation
 UW Medicine SLU Brotman Auditorium, Tue July 17, 9:00 to 18:00
 Gennady Cymbalyuk, Georgia State University

- W8 Insights Gained by Detailed Dendritic Modeling Allen Institute 540 Lab, Wed July 18, 9:00 to 18:00 Dieter Jaeger, Emory University Volker Steuber, University of Hertfordshire
- W9 Integrative Theories of Cortical Function Allen Institute Training Room, Wed July 18, 9:00 to 18:00 <u>Hamish Meffin</u>, The University of Melbourne <u>Stefan Mihalas</u>, Allen Institute for Brain Science Anthony Burkitt, The University of Melbourne
- W10 How Does Learning Reshape the Dimensionality of Collective Network Activity? UW Medicine SLU Brotman Auditorium, Wed July 18, 9:00 to 18:00
 <u>Rainer Engelken</u>, Columbia University
 <u>Guillaume Lajoie</u>, Université de Montréal
 Merav Stern, University of Washington
- W11 Towards New Models for Cognitive Flexibility
 Allen Institute 288/289, Wed July 18, 9:00 to 18:00
 Rajeev Rikhye, Massachusetts Institute of Technology

Room assignments are subject to change. Please visit registration at the Allen Institute for final room assignments.

Abstracts

Tutorials

T1 Allen Institute Brain Observatory and Brain Modeling Toolkit tutorial

Allen Institute Training Room, Friday July 13, 09:00 - 16:30

Yazan Billeh, Allen Institute, USA Sergey Gratiy, Allen Institute, USA Saskia E. J. de Vries, Allen Institute, USA

The first part of the tutorial will introduce the Allen Brain Observatory, an open dataset of neural activity recorded in the visual cortex of the awake mouse. Collected using a standardized 2-photon calcium imaging pipeline, this dataset contains recordings in response to a standard set of visual stimuli from 40,000 neurons in 200 experiments, spanning 6 cortical areas, 3 cortical layers, and 6 excitatory Cre-defined cell populations. This tutorial will introduce the scientific context for this pipelined dataset, and demonstrate how to download and access this data using the Allen Software Development Kits (Allen SDK). Working in a Python environment, participants will be led through example analyses of both single cell and population level sensory coding.

The second part of the tutorial will introduce the Brain Modeling ToolKit (BMTK). BMTK is a Python-based software package for building and simulating models of neuronal circuits. It supports simulations at four levels of resolution (biophysically detailed, point-neuron, population statistics, and machine intelligence) by providing wrappers to tools such as NEURON, NEST, diPDE, and TensorFlow. This tutorial will give an overview of BMTK and work through two examples to demonstrate how to build and run networks at different levels of granularity.

This tutorial requires a basic level of Python proficiency and using Python scientific packages such as numpy and pandas.

- [1] Brain Observatory: observatory.brain-map.org/visualcoding
- [2] BMTK: alleninstitute.github.io/bmtk/

T2 Multiscale modeling from molecular level to large network level

Allen Institute Auditorium, Friday July 13, 09:00 - 16:30

Salvador Dura-Bernal, SUNY Downstate, USA Robert McDougal, Yale University, USA William Lytton, SUNY Downstate, USA

Understanding brain function requires characterizing the interactions occurring across many temporal and spatial scales. Mechanistic multiscale modeling aims to organize and explore these interactions to determine how dynamics at one scale alter or are associated with dynamics at other scales. In this way, multiscale models provide insights into how changes at molecular and cellular levels, caused by development, learning, brain disease, drugs, or other factors, affect the dynamics of local networks and of brain areas. Large neuroscience data-gathering projects throughout the world (e.g. US BRAIN, EU HBP, Allen Institute) are making use of these tools – including the NEURON multiscale simulator – to better understand the vast amounts of information being gathered using many different techniques at different scales [1, 2].

This tutorial will present recent multiscale modeling tool development in the NEURON simulator [3], with an emphasis on reaction diffusion intracellular and extracellular modeling (chemophysiology complementing electrophysiology) and simulation of large biophysically detailed networks. The morning session will introduce 1) the basics of single cell modeling using the NEURON simulator and 2) NEURON's Reaction-Diffusion (RxD) module [4, 5]. RxD provides specification and simulation for molecular scale dynamics (genomics, proteomics, signaling cascades and reaction dynamics) coupled with the electrophysiological dynamics of the cell membrane. The afternoon session will introduce 1) basic network modeling in NEURON [6, 7], and 2) NetPyNE, a high-level Python interface (programmatic and GUI-based) to NEURON that facilitates the development, parallel simulation, and analysis of biological neuronal networks [8, 9, 10]. To finish, we will show an example of combining both tools to explore the effects of molecular-level dynamics in a large network.

- [1] Markram H et al. (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456-492
- [2] Hawrylycz M, Anastassiou C, Arkhipov A, Berg J, Buice M, Cain N, Gouwens NW, Gratiy S, et al. (2016) Inferring cortical function in the mouse visual system through large-scale systems neuroscience. PNAS, 113(27):7337-7344
- [3] NEURON: https://neuron.yale.edu/
- [4] McDougal R, Hines M, Lytton W (2013) Reaction-diffusion in the NEURON simulator. Front. Neuroinform. 7:28
- [5] RxD: https://neuron.yale.edu/neuron/static/docs/rxd/index.html
- [6] Migliore M, Cannia C, Lytton WW, Markram H and Hines ML (2006) Parallel network simulations with NEURON. Journal of Computational Neuroscience 21:119-129
- [7] Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schürmann F, Hines ML (2016) Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28:2063-2090
- [8] NetPyNE: www.netpyne.org
- [9] NetPyNE-UI: https://github.com/MetaCell/NetPyNE-UI
- [10] Dura-Bernal S, Neymotin SA, Suter BA, Shepherd G, Lytton WW (2018) Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv 201707

T3 Simulation of large-scale neural networks

UW Medicine SLU Brotman Auditorium, Friday July 13, 09:00 - 16:30

Sacha J. van Albada, Jülich Research Centre and JARA, Germany **Philipp Weidel**, Jülich Research Centre and JARA, Germany

This tutorial starts with an introduction to large-scale neuronal networks, giving examples of existing models and identifying some challenges these networks pose for modeling and simulation. This is followed by an introduction to the NEural Simulation Tool (NEST [1]), shedding light on its design principles, which address challenges for large-scale simulations. An overview of the features of NEST is provided, also touching upon advanced properties of neuronal networks like gap-junctions [2]. To familiarize participants with the basic usage of NEST, some simple networks are programmed in hands-on exercises. Next, the tutorial explains how NEST enables parallel simulations via both distributed and threaded computations. Threaded simulations are demonstrated on a cortical microcircuit model [3]. Finally, the tutorial provides an introduction to the NEST Modeling Language (NESTML [4]). In this final hands-on part of the tutorial, the participants learn how to create neuron models in NEST using NESTML.

The tutorial does not assume any prior knowledge of NEST. However, it is recommended that participants install NEST on their laptops beforehand [5]. Furthermore, it is recommended to have VirtualBox installed and to have at least 4 GB of free disk space available.

- [1] Kunkel S, Morrison A, Weidel P, Eppler JM, Sinha A, Schenck W, Plesser HE (2017). NEST 2.12.0. Zenodo. http://doi.org/10.5281/zenodo.259534
- [2] Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A and Diesmann M (2015) A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations Front. Neuroinform. 9:22
- [3] Potjans TC, Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex. 24(3):785-806
- [4] Plotnikov D, Rumpe B, Blundell I, Ippen T, Eppler JM and Morrison A (2016) NESTML: a modeling language for spiking neurons. arXiv:1606.02882
- [5] http://www.nest-simulator.org/installation/

T4 Neuroinformatics resources for computational modelers

Allen Institute 288/289, Friday July 13, 09:00 - 12:00

Padraig Gleeson, University College London, UK

Neuroinformatics resources are becoming an essential part of computational investigations in neuroscience. A movement towards making data and software freely available to the community means that more and more experimental datasets, general purpose analysis tools and infrastructure for computational modelling and simulation are available for computational neuroscientists to help build, constrain and validate their models.

This tutorial will give an overview of the range of neuroinformatics resources currently available to the community. The first half will give a brief introduction to a number of these under the headings; Experimental datasets; Structured data from literature; Analysis tools; Simulation environments; Model sharing; Computing infrastructure; Open source initiatives. The second half of the tutorial will involve hands on exercises where multiple resource will be accessed, data transformed and analysed and new models executed. Note that this tutorial will focus on neuroinformatics resources for cell and network modelling, and not cover the wide range of neuroimaging or genetics databases.

References

[1] Open source at: https://github.com/NeuralEnsemble/NeuroinformaticsTutorial

T5 Modeling and analysis of extracellular potentials

Allen Institute 286/287, Friday July 13, 09:00 - 12:00

Gaute Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway **Espen Hagen**, Dept. of Physics, University of Oslo, Norway

While extracellular electrical recordings have been one of the main workhorses in electrophysiology, the interpretation of such recordings is not trivial [1, 2, 3], as the measured signals result of both local and remote neuronal activity. The recorded extracellular potentials in general stem from a complicated sum of contributions from all transmembrane currents of the neurons in the vicinity of the electrode contact. The duration of spikes, the extracellular signatures of neuronal action potentials, is so short that the high-frequency part of the recorded signal, the multi-unit activity (MUA), often can be sorted into spiking contributions from the individual neurons surrounding the electrode [4]. No such simplifying feature aids us in the interpretation of the low-frequency part, the local field potential (LFP). To take a full advantage of the new generation of silicon-based multielectrodes recording from tens, hundreds or thousands of positions simultaneously, we thus need to develop new data analysis methods and models grounded in the biophysics of extracellular potentials [1, 3, 4]. This is the topic of the present tutorial.

In the tutorial we will go through - the biophysics of extracellular recordings in the brain, - a scheme for biophysically detailed modeling of extracellular potentials and the application to modeling single spikes [5-7], MUAs [8] and LFPs, both from single neurons [9] and populations of neurons [8, 10-12], - LFPy (LFPy.github.io) [13], a versatile tool based on Python and the NEURON simulation environment [14] (www.neuron.yale.edu) for calculation of extracellular potentials around neurons and networks of neurons, as well as corresponding electroencephalography (EEG) and magnetoencephalography (MEG) signals.

- [1] KH Pettersen et al., Extracellular spikes and CSD in Handbook of Neural Activity Measurement, Cambridge (2012)
- [2] G Buzsaki et al., Nat Rev Neurosci 13:407 (2012)
- [3] GT Einevoll et al., Nat Rev Neurosci 14:770 (2013)
- [4] GT Einevoll et al., Curr Op Neurobiol 22:11 (2012)
- [5] G Holt, C Koch, J Comp Neurosci 6:169 (1999)
- [6] J Gold et al., J Neurophysiol 95:3113 (2006)
- [7] KH Pettersen and GT Einevoll, Biophys J 94:784 (2008)
- [8] KH Pettersen et al., J Comp Neurosci 24:291 (2008)
- [9] H Lindén et al., J Comp Neurosci 29: 423 (2010)
- [10] H Lindén et al., Neuron 72:859 (2011)
- [11] S Leski et al., PLoS Comp Biol 9:e1003137 (2013)
- [12] E Hagen et al., Cereb Cortex 26:4461 (2016)
- [13] H Lindén et al., Front Neuroinf 7:41 (2014)
- [14] ML Hines et al., Front Neuroinf 3:1 (2009)

T6 Single cell RNA-seq analysis for transcriptomic type characterization

Allen Institute 286/287, Friday July 13, 13:30 - 16:30

Zizhen Yao, Allen Institute, USA Lucas Graybuck, Allen Institute, USA

The functional interplay of neural cell types gives rise to the complex, emergent function of neural tissues. To fully understand the biology of the brain, we need to be able to distinguish and describe these cell types, and identify markers that can be used to selectively label cell types for further study [1]. One scalable and comprehensive method for identifying cell types in the brain is single cell RNA-sequencing. High-quality and large scale scRNA-seq datasets provide data about the expression of thousands of genes from thousands of individual cells. With this starting point, we can perform clustering analyses to identify the cell types of mouse and human brains.

In the first half of this tutorial, we will first give an introduction of single cell RNA-seq technology, with an overview of multiple single cell studies in CNS, and commonly used computational tools. Then, we will focus on the recent comprehensive survey of mouse cortical cell types conducted by the Allen Institute for Brain Science, and give a summary of what we have learned about cell types in this study. In the second half of the tutorial, we will introduce the single cell analysis tools we have developed at the Allen Institute for Brain Science. To enable users to apply our analysis methods to their own datasets, we have developed the scrattch suite for R, which includes scrattch.iterclust (iterative clustering methods), scrattch.vis (data visualization methods), and scrattch.io (file and format handling). In the tutorial, we will demonstrate how these packages can be used to cluster scRNA-seq data generated for 1,679 cells from Tasic, et al. 2016. Nat. Neurosci [2].

- [1] Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci. 2016;19(9):1131-1141
- [2] Tasic B, Venon M, et al. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics. Nat Neurosci. 2016; 19(2): 335-346
- [3] Tasic B, Yao Z, et al. Shared and distinct transcriptomic cell types across neocortical areas. bioRxiv 229542; doi: https://doi.org/10.1101/229542
- [4] Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214

Invited Presentations

Daniel Wolpert FMedSci FRS, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA

K1 – Probabilistic models of sensorimotor control and decision making

The effortless ease with which humans move our arms, our eyes, even our lips when we speak masks the true complexity of the control processes involved. This is evident when we try to build machines to perform human control tasks. I will review our work on how humans learn to make skilled movements covering probabilistic models of learning, including Bayesian and structural learning as well as the role of context in activating motor memories. I will also review our work showing the intimate interactions between decision making and sensorimotor control processes. This includes the bidirectional flow of information between elements of decision formations such as accumulated evidence and motor processes such as reflex gains. Taken together these studies show that probabilistic models play a fundamental role in human sensorimotor control.

Rajesh Rao Hwang Endowed Professor of Computer Science & Engineering and EE University of Washington, Seattle, WA, USA

K2 – The Bayesian brain: from predictive coding to decision making

How can the structure of brain circuits inform large-scale theories of brain function? We explore this question in the context of Bayesian models of perception and action, which prescribe optimal ways of combining sensory information with prior knowledge and rewards to enact behaviors. I will briefly review two Bayesian models, deep predictive coding and partially observable Markov decision processes (POMDPs), and illustrate how circuit structure can provide important clues to systems-level computation.

Nancy Kopell Professor, Mathematics & Statistics, Director, Cognitive Rhythms Collaborative, Co-Director, CompNet, Boston University, Boston, MA, USA

K3 – Coordination, modulation and functional implications of brain rhythms

The neuroscience community is just beginning to understand how brain rhythms take part in cognition and how flexible are the kinds of computations that can be made with rhythms. In this talk, I will discuss some case studies demonstrating this enormous flexibility and important functional implications. Each of the case studies is about some form of coordination. Examples include the interaction of multiple intrinsic time scales in a cortical rhythm in response to a periodic input; the ability of a slow rhythm in the striatum to modulate two other rhythms in different phases of its period; and the ability of a parietal rhythm to guide the formation, manipulation and termination of a kind of working memory.

Eve Marder Professor of Biology, Member, US National Academy of Sciences, Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA

K4 – Differential resilience to perturbation of circuits with similar performance

Experimental work on the crustacean stomatogastric ganglion (STG) has revealed a 2-6 fold variability in many of the parameters that are important for circuit dynamics. At the same time, a large body of theoretical work shows that similar network performance can arise from diverse underlying parameter sets. Together, these lines of evidence suggest that each individual animal, at any moment in its life-time, has found a different solution to producing "good enough" motor patterns for healthy performance in the world. This poses the question of the extent to which animals with different sets of underlying circuit parameters can respond reliably and robustly to environmental perturbations and neuromodulation. Consequently, we study the effects of temperature, pH, high K+, and neuromodulation on the pyloric rhythm of crabs. While all animals respond remarkably well to large environmental perturbations, extreme perturbations that produce system "crashes" reveal the underlying parameter differences in the population. Moreover, models of homeostatic regulation of intrinsic excitability give insight into the kinds of mechanisms that could give rise to the highly variable solutions to stable circuit performance.

Contributed Talks

F1 Predictive computations in the primary visual cortex

Jan Homann*, Michael Berry, Sue-Ann Koay, Alistair M. Glidden, and David W. Tank

Princeton University, Department of Neuroscience, Princeton, NJ, United States

Predictions about the future are important for an animal in order to interact with its environment. Therefore, predictive computation might be a core operation carried out by neocortical microcircuits. We explored whether the primary visual cortex can perform such computations by presenting repeated temporal sequences of static images with occasional unpredictable disruptions. Simultaneous recordings of 150-250 neurons were performed using two-photon Ca++ imaging of layer 2/3 neurons labeled with GCaMP6f in awake mice, who were head-fixed but free to run on a styrofoam ball. In our visual stimuli, each spatial frame consisted of either an oriented grating or a random superposition of Gabor filters.

We found that most of the neurons (\sim 98%) showed a strong reduction in activity over a few repeats of the temporal sequence. When we presented a frame that violated the temporal sequence, these neurons responded transiently. In contrast, a small fraction (\sim 2%) had activity that ramped up over several repeats, before reaching a steady, sequence-modulated response. This partitioning of the neural population into transient and sustained responses was observed for all temporal sequences tested. At the same time, the identity of which neurons were transient versus sustained depended on the temporal sequence.

These features – adaptation to a repeated temporal sequence and a transient response to a sequence violation – are hallmarks of predictive coding. After a few repeats, the temporal sequence becomes predictable and can be efficiently represented by a small subset of the neural population. The unpredictable frame then elicits an error signal because it encodes a potentially important novelty. In order to explore whether neural novelty signals could be useful to the animal, we performed behavioral experiments with matched visual stimuli that demonstrated that mice could easily learn to lick in response to a violation of an ongoing temporal sequence.

F2 Response to deep brain stimulation in essential tremor: predictions beyond noisy data with a Wilson-Cowan model

Benoit Duchet¹*, Gihan Weerasinghe¹, Christian Bick², Hayriye Cagnan¹, and Rafal Bogacz¹

¹University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom ²University of Oxford, Mathematical Institute, Oxford, United Kingdom

Thalamic deep brain stimulation (DBS) is a therapy option for Essential tremor (ET), the most common movement disorder. Clinically available DBS delivers constant, high frequency electrical stimulation and could be improved in terms of efficacy, reduction of side effects, and decrease in power usage.

Given phased locked stimulation data, we propose a method to study the effects of stimulation along both the tremor oscillation phase axis and the tremor oscillation amplitude axis, with the goal of better informing stimulation strategies. Because of noise in tremor recordings and experimental limitations, the amplitude axis is especially difficult to access by direct data analysis in the phasic paradigm. We show that a Wilson-Cowan model can be fitted to data, and thanks to isochronal and isostable coordinates, we obtain response curves and surfaces for the noiseless model. The noiseless 2D phase response curves and amplitude response curves show good agreement with the response curves obtained directly from experimental data. The 3D response surfaces give us the ability to make predictions beyond what the noise level of the data can let us see. In that sense, our method can be seen as a way of de-noising the experimental response to stimulation. Although mathematically inspired by a canonical neuroscience model, our model includes the various neural populations thought to be involved in the generation of ET, and allows for the stimulation of the most common target for ET DBS, the ventral intermediate nucleus of the thalamus.

Our model predicts that only certain phases are conducive to amplitude reduction through stimulation, the best of which being the phase that brings the system closer to the fixed point, where there are no pathological oscillations. This particular phase is amplitude dependent, but in general the optimal stimulation phase occurs during the descending part of the oscillations, slightly before the trough. Moreover, the response to stimulation is linearly dependent on stimulation magnitude. We also find that the best phase to stimulate corresponds to the maximum positive slope of the PRC. Finally, we report that the effects of stimulation are reduced as the amplitude of the oscillations increases, and therefore predict that phasic stimulation will be less effective when delivered at higher oscillation amplitudes.

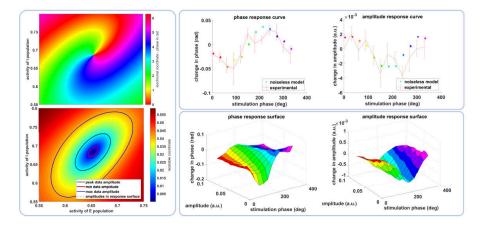


Figure 1: Response curves and surfaces from isochronal and isostable coordinates for patient 1. The model response curves agree with experimental data.

F3 A molecular odorant transduction model and combinatorial encoding in the Drosophila Antennae

Aurel A. Lazar, Chung-Heng Yeh*

Columbia University, Department of Electrical Engineering, New York, NY, United States

A key functionality of olfactory sensory neurons (OSNs) in the *Drosophila* antennae is to jointly encode both odorant identity and odorant concentration. The identity of an odorant is combinatorially encoded by the set of responding OSN groups expressing the same receptor type, and the size of OSN set varies as the concentration changes. The temporal response of an OSN simultaneously represents the information of odorant concentration and concentration gradient. These two aspects of olfactory coding, *identity* and *concentration*, originate in the odorant transduction process. However, detailed molecular models of the odorant transduction process are scarce for fruit flies.

To address these challenges we advance a comprehensive model of fruit fly OSNs as a cascade consisting of an odorant transduction process (OTP) and a biophysical spike generator (BSG). We model identity and concentration in OTP by an odorant-receptor binding rate tensor modulated by the odorant concentration profile and an odorant-receptor dissociation rate tensor, and quantitatively describe the ligand binding/dissociation process.

To biologically validate our modeling approach, we first propose an algorithm for estimating the affinity and the dissociation rate of an odorant-receptor pair. We then apply the algorithm to electrophysiology recordings and estimate the affinity and dissociation rate for three odorant-receptor pairs, (*acetone*, *Or59b*), (*methyl butyrate*, *Or59b*), and (*butyraldehyde*, *Or7a*). Second, we evaluate the temporal response of the OSN model with a multitude of stimuli, including step, ramp and parabolic odorant waveforms for all three odorant-receptor pairs. The output of the model closely reproduces the temporal responses of OSNs obtained from *in vivo* electrophysiology recordings for all three odorant-receptor pairs across all three types of stimuli. Lastly, we evaluate the model at the OSN antennae population level. We first empirically estimate the odorant-receptor affinity using the spike count records in the DoOR database for 24 receptor types in response to 110 odorants. With estimated affinity values, we simulate the temporal response of the OSN population to staircase odorant waveforms. The output of simulated OSN population demonstrates that the odorant identity is encoded in the set of odorant-activated OSN groups expressing the same receptor type, and, more importantly, the size of the set expands or reduces as the odorant concentration increases or decreases.

The fruit fly OSN model presented here provides a theoretical foundation for understanding the neural code of both odorant identity and odorant concentration. It advances the state-of-the-art in a number of ways. First, it models on the molecular level the combinatorial complexity of the transformation taking place in *Drosophila* antennae OSNs. The resulting *concentration-dependent combinatorial code* determines the complexity of the input space driving olfactory processing in the downstream neuropils, such as odorant recognition and olfactory associative learning. Second, the model is biologically validated using multiple electrophysiology recordings. Third, the OSN model demonstrates that the currently available data for odorant-receptor responses only enables the estimation of the affinity of the odorant-receptor pair. Our model calls for new experiments for massively identifying the odorant-receptor dissociation rates of relevance to flies.

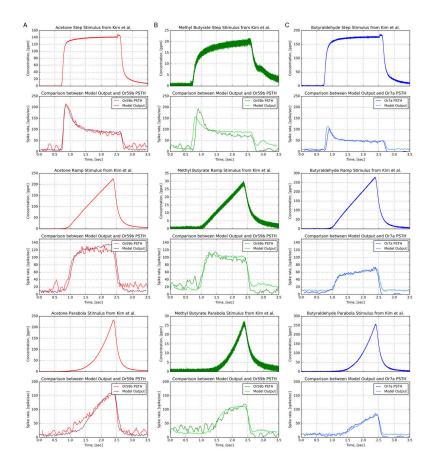


Figure 1: Characterization of the fruit fly OSN model with multiple odorants and receptor types. Three odorantreceptor pairs are tested. (A) (Or59b, acetone) (B) (Or59b, methyl butyrate). (C) (Or7a, butyraldehyde). (Odd rows) Stimuli. (Even rows) PSTH from the model output and experimental recordings.

O1 Generative model of visual cortex with short- and long-range recurrent interactions

Federica Cappareli*, Klaus Pawelzik, David Rotermund, and Udo Ernst

University of Bremen, Institute for Theoretical Physics, Bremen, Germany

In V1, neuronal responses are sensitive to context: responses to stimuli presented within the classical receptive field are modulated by stimuli in the surround. Recently, sparse coding models [1] have been successful in explaining part of these modulatory effects [2]: Their dynamics implements an inference process to seek an optimal (w.r.t. accuracy and sparseness) representation of a visual input in terms of fundamental features. This is achieved through a competition between similarly tuned neurons with overlapping input fields, which also mediates contextual modulation.

However, this connection scheme implies that neurons with non-overlapping input fields do not interact. Therefore, the proposed mechanism does not provide a satisfactory explanation of the mechanisms behind these phenomena, since contextual effects are usually caused by surround stimuli positioned far from the cRF (e.g. Mizobe et al 2001 report collinear modulation for distance center-surround up to 12 deg). To overcome this limitation, we propose an extension of the classical framework [2] by defining a new generative model for visual scenes that includes dependencies among different features in spatially well-separated locations. To perform inference in this model, we also derive a dynamical system that can be mapped to a neural circuit and a lateral connection scheme for optimally processing local and contextual information.

The result can be interpreted as a neural network where units are linked by short range horizontal connections within the same hypercolumn and by long range connections between different hypercolumns (Fig. 1b). Each hypercolumn contains units that receive input from a localized region of the visual field and builds a sparse representation of its input as if it was presented in isolation. In parallel, these local representations are combined by providing contextual information to each other. In our simulations connections are learned from natural images. Long-range connections reflect the co-occurrence of features in different visual field locations: this predicts a connectivity structure linking neurons with similar orientation and spatial frequency preferences, which is similar to the typical patterns found for long-ranging (3-4mm) horizontal axons in visual cortex [3]. Subjected to contextual stimuli typically used in empirical studies, our model replicates several hallmark effects of contextual processing. Hereby local and long-range interactions act hand-in-hand, for example in realizing two different origins of near and far surround suppression, respectively [4]. In summary, our model provides a novel framework for contextual processing in the visual system proposing a well-defined functional role for horizontal axons.

References

[1] Olshausen, B. A., Field, D. J. (1997) Sparse coding with an overcomplete basis set: A strategy employed by V1?

[2] Zhu, M., Rozell, C. J. (2013) Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system

[3] Florencia lacaruso M., Gasler I.T., Hofer, S.B. Synaptic organization of visual space in primary visual cortex

[4] Angelucci A., Bijanzadeh M., Nurminen L., Federer F., Merlin S., Bressloff P.C. (2017) Circuits and Mechanisms for Surround Modulation in Visual Cortex

Acknowledgements

This work has been supported by the Creative Unit I-See of the University of Bremen and the BMBF, Bernstein Award Udo Ernst, Grant No. 01GQ1106.

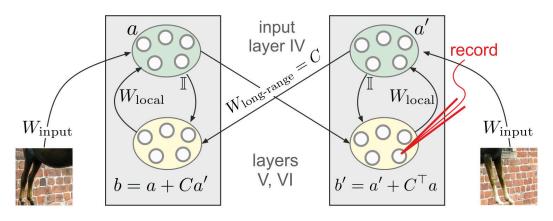


Figure 1: (A) Example of stimuli from a natural scene (top) and dictionary of fundamental features (bottom) (B) Scheme of the generative model (C) Network architecture to perform inference in the generative model

O2 Info in a bottleneck: exploring the compression of visual information in the retina

Gabrielle Gutierrez^{1*}, Eric Shea-Brown¹, and Fred Rieke²

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²University of Washington, Departments of Physiology & Biophysics, Seattle, WA, United States

The retina is organized in convergent and divergent layers that compress and expand signals before passing visual information along to the brain. Receptive fields anatomically correspond to the collection of inputs that converge upon a single retinal output cell. This subunit circuit structure produces an information bottleneck because information is compressed along the pathway to an output neuron. We wondered whether the structure of the retina combined with its adaptation properties serve to preserve information given this bottleneck.

A remarkable property of the retina is its ability to adapt its processing to environmental conditions. Adaptation to background luminance shifts the nonlinear response filters of the subunits over a timescale of about a minute. This has the effect of adjusting the linearity of responses in a manner that is dependent on the luminance environment. Another feature of the retina is the diversity of cell types present at the output layer. Within types, there are ON and OFF versions of cell types which have sensitivities that are complementary but not symmetrical. Having complementary cell types combined with adaptation mechanisms may allow the retina to leverage these redundancies under certain conditions while having the flexibility to adapt to an efficient or predictive code in other conditions. We want to know whether the retina adapts its processing to maximize visual information transmission by adjusting the subunit response functions in the circuit.

To quantify the amount of information that is preserved in the signals exiting the retina under this kind of set up, we estimate the mutual information between a naturalistic stimulus set and the output from our model retina circuit. We use a binless estimator to account for the fact that the input signals and the outputs are continuous. Consistent with past studies, our preliminary results indicate that the optimal thresholds for the nonlinear subunits depend on the amount of input noise given a naturalistic distribution of stimulus contrasts. Our work builds on past studies by incorporating the known subunit structure into the circuit which produces information compression. Under circumstances where subunits receive independent inputs, rather than correlated inputs, the circuit is optimal when ON and OFF subunits redundantly encode the most prevalent stimuli for a broad range of subunit noise levels. Our preliminary results suggest novel ways in which adaptation mechanisms, along with the particular bottleneck structure of the retina, enable the retina to adapt the computations it produces in different contexts.

O3 Structural and dynamical properties of local cortical networks result from robust associative learning

Danke Zhang, Chi Zhang, and Armen Stepanyants*

Northeastern University, Department of Physics, Boston, MA, United States

Many ubiquitous features characterize the structure and dynamics of local cortical networks. At the level of pairwise connectivity, it is known that the probabilities of excitatory connections are generally lower than those for inhibitory, and the majority of reported probabilities lies in the 0.10 - 0.19 range if the presynaptic cell is excitatory and 0.25 - 0.56 range if it is inhibitory. It is also known that the distributions of connection weights have stereotypic shapes with the majority of measured coefficients of variation (CV) of unitary postsynaptic potentials in the 0.85 - 1.1 range for excitatory connections and slightly lower values for inhibitory, 0.78 - 0.96. At the level of connectivity within 3-neuron clusters, several overrepresented connectivity motifs have been discovered. Information becomes scarce as one considers larger clusters of neurons, but even here deviations from random connectivity have been reported for clusters of 3-8 neurons. Similarly, many universal features characterize activity of neurons in local cortical networks. For example, individual neurons exhibit highly irregular spiking activity, resembling Poisson processes with close to one CV in inter-spike-intervals. Spike trains of nearby neurons are only marginally correlated, 0.04 - 0.15, and, at the network level, spiking activity can be described as sustained, irregular, and asynchronous.

In this study, we pursue a hypothesis that associative learning alone is sufficient to explain these network features. To test this hypothesis, we trained recurrent networks of excitatory and inhibitory McCulloch and Pitts neurons [1,2] on memory sequences of varying lengths and compared network properties to those observed experimentally. Learning in the network is mediated by changing connection weights in the presence of biologically inspired constraints. (1) Input connection weights of each neuron are sign-constrained to be non-negative if the presynaptic neuron is excitatory and non-positive if it is inhibitory. (2) Input weights of each neuron are homeostatically constrained to have a predefined *l1-norm*. (3) Each neuron must attempt to learn its associations robustly, so that they can be recalled correctly in the presence of a given level of postsynaptic noise. We explore structural and dynamical properties of associative networks in the space of these constraints, and show that there is a unique region of parameters that is consistent with all of the above-described experimental observations. In this region, local cortical circuits are loaded with associative memories close to their capacity and memories can be successfully retrieved even in the presence of noise comparable to the baseline variations in the postsynaptic potential, which provides an independent validation of the theory in terms of the hypothesized network function. Confluence of these results suggests that many structural and dynamical properties of local cortical networks are simply a byproduct of associative learning.

This work is supported by Air Force grant FA9550-15-1-0398 and NSF grant IIS-1526642.

References

[1] Chapeton J, Fares T, LaSota D, Stepanyants A. Efficient associative memory storage in cortical circuits of inhibitory and excitatory neurons. PNAS 2012, 109, E3614-3622.

[2] Chapeton J, Gala R, Stepanyants A. Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits. Front Comput Neurosci 2015, 9, 74.

O4 Reduced models of an attractor neural network's response to conflicting external inputs

Kathryn Hedrick*

Southern Methodist University, Department of Mathematics, Dallas, TX, United States

The theory of attractor neural networks has been influential in our understanding of the neural processes underlying spatial, declarative, and episodic memory. Many theoretical studies focus on the inherent properties of an attractor, such as its structure and capacity. Relatively little is known about how an attractor neural network responds to external inputs, which often carry conflicting information about a stimulus. In this talk I will present analytical results concerning the behavior of an attractor neural network's response to conflicting external inputs. My focus is on analyzing the emergent properties of the megamap model, a quasi-continuous attractor network in which place cells are flexibly recombined to represent a large spatial environment (Hedrick and Zhang, 2016). In this model, the system shows a sharp transition from the winner-take-all mode, which is characteristic of standard continuous attractor neural networks, to a combinatorial mode in which the equilibrium activity pattern combines embedded attractor states in response to conflicting external inputs. I derive a numerical test for determining the operational mode of the system a priori. I then derive a linear transformation from the full model to a reduced 2-unit model that has similar qualitative behavior. The analysis of the reduced model and explicit expressions relating the parameters of the reduced model to the megamap elucidate the conditions under which the combinatorial mode emerges and the dynamics in each mode given the relative strength of the attractor network and the relative strength of the two conflicting inputs. Although my focus on a particular attractor network model, I describe a set of conditions under which the reduced model can be applied to more general attractor neural networks.

The reduced 2-unit model captures the amplitude of each activity bump but not its radius. I extend this reduced model to examine the spatial effects on the system's behavior by approximating the activity bump and recurrent connections using two-dimensional Gaussian tuning curves. Analysis of this reduced model reveals that these spatial effects underlie the nonlinearities observed in the full megamap model but not in the reduced 2-unit model. I compare these results to numerical simulations and electrophysiological data from an experiment in which hippocampal place cells resolve conflicting external inputs from the medial entorhinal cortex (MEC) and lateral entorhinal cortex (LEC) when local and global cues are rotated in opposite directions (Knierim and Ne-unuebel, 2016). In this experiment, place cells in the CA3 (which are believed to form attractor neural networks) coherently follow the noisy inputs from the LEC rather than the much stronger spatial inputs from the MEC. The reduced model predicts that this surprising response is due to three factors: (1) CA3 place cells are initially driven by the LEC input only, (2) the attractor network acts in the WTA mode, and (3) connections from MEC to CA3 are governed by fast Hebbian synaptic plasticity. To bridge the gap between the idealistic theory and the noisy electrophysiological data, I run numerical simulations using the conductance-based integrate and fire model and unsupervised Hebbian plasticity. The noise in the model leads to the partial remapping observed experimentally.

O5 Topologies of repetitive functional network motifs vary dynamically with age in the developing human brain: Evidence from very high-dimensional invasive brain signals

Caterina Stamoulis^{1*}, Phillip Pearl²

¹ Harvard Medical School, Faculty of Medicine, Boston, MA, United States ² Harvard Medical School, Department of Neurology, Boston, MA, United States

Throughout the course of the day, or even an hour, functional brain networks are continuously recruited to process thousands of inputs from the outside world and respond to the demands of countless behaviors and cognitive processes. Across scales of organization, these networks' small-world and scale-free topologies facilitate optimally efficient neural information processing. However, the building blocks of these networks (modules or motifs), their emergence, re-organization during development and time-dependent stereotypy remain poorly understood. Unrelated theoretical work has shown that specific network patterns emerge as a result of a dynamic system's propensity towards a stable configuration. There is also growing evidence from both animal and human studies that a relatively small number of such modules are combined (in potentially infinite ways) to give rise to the observed functional network topologies. In this study, we investigated the organization, size and stereotypy of functional network motifs in the developing human brain, using very high-dimensional invasive human electrophysiological signals, collected continuously over long periods of time (typically several days) from a relatively large number of children and young adults (n = 39, age <1 to 23 years) with intracerebral electrode grids covering different parts of the brain. All patients had recordings from a relatively large number (>70) of electrodes. Information theoretic and contraction theoretic measures were used to estimate functional connectivity, identify sub-network patterns (motifs) that occurred repetitively over time and independently of the area of the brain being spatially sampled, and characterize their stability (using an eigenvalue analysis).

A relatively small number of functionally active nodes were estimated, which formed stable patterns that occurred repetitively across temporal scales and brain regions. The size of these patterns (number of activated nodes) changed with age, with progressively smaller sub-graphs (3-4 nodes) emerging as a function of neural maturation. Across ages, identified motifs were consistently correlated with network stability. These results indicate the although stable functional network motifs may be in place early in life to process multi-modal sensory information, re-organization of the brain's neural circuitry as a function of neural maturation may lead to increasingly parsimonious modules to facilitate increasingly efficient neural information processing. These modules may also constitute a network-level biomarker of neural maturation at the macroscale sampled by invasive human recordings.

O6 Revealing principles of cortical computation using the Allen Brain Observatory: A large, standardized calcium imaging dataset from the mouse visual cortex

Michael A. Buice¹, Saskia E. J. de Vries^{1*}, Gabriel Ocker¹, Michael Oliver¹, Peter Ledochowitsch¹, Daniel Millman¹, Eric Shea-Brown², Christof Koch¹, Jianghong Shi², and R Clay Reid¹

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²University of Washington, Department of Applied Mathematics, Seattle, WA, United States

A prominent question of sensory processing is how information is represented and transformed by the neural circuit through multiple layers and across multiple areas in order to create perceptions and ultimately guide behavior. In order to facilitate uncovering these principles, we have created the Allen Brain Observatory. This is a public dataset of neural responses collected from visual areas of awake mouse cortex using 2-photon calcium imaging. We systematically recorded responses from over 50,000 neurons in over 500 experiments, using a high-throughput imaging pipeline. Data were collected from 6 cortical areas and 4 cortical layers. GCaMP6f was transgenically expressed, driven by 13 different Cre lines which limit expression to specific subsets of excitatory (10 Cre lines) or inhibitory cells (3 Cre lines). Visual responses were imaged in response to an array of both artificial and natural stimuli, including drifting gratings, static gratings, locally sparse noise, natural scenes and natural movies while the mouse was awake and free to run on a running disc. Several metrics were computed to describe the visual responses of the neurons, including orientation and direction selectivity, image selectivity, lifetime sparseness, and receptive field areas.

Surveying these metrics across areas, layers and Cre-defined cell populations, several patterns emerge. Layer 4 exhibited clear differences across areas and cell populations, but these differences were reduced in the other layers. This pattern is consistent with layer 4 predominately carrying feedforward thalamocortical input, while layers 2/3, 5 and 6 represent higher order responses.

One of the most striking results in this dataset is the small numbers of responsive cells and the remarkable variability of the responses of these cells. Only 57% of cells in the Brain Observatory dataset respond to any of the visual stimuli presented. Further, even responsive cells show large trial-to-trial variability. We fit these neurons to a simple wavelet pyramid model with simple (linear-nonlinear) and complex components (the "energy" model). Roughly 15% of neurons in the dataset show significantly predictable responses to visual stimuli via this model, with relatively low explainable variance. All cells also show some degree of "complex" behavior, ie. there are no purely "simple" cells according to this model. We compare the representations in each layer and area to responses generated by standard Convolutional Neural Networks, a model derived from the canonical understanding of the cat visual system. We find that the mouse cortex are most similar to early middle areas of ConvNets, rather than the initial Gabor-like layer thought to describe responses in V1 of cats.

Finally, we examine the correlation structure of population activity, showing that correlations in neural responses have an impact on information transmission in an area and layer dependent fashion. Furthermore, we show that the "noise" and "signal" correlations are positively correlated throughout the mouse visual system, providing strong evidence against certain types of theories that exhibit "explaining away", ie. theories in which neurons with similar mean tuning properties will functionally inhibit one another, such as the sparse coding model of Ol-shausen and Field and some probabilistic coding models. This dataset provides a testbed for theories of cortical computations and will be a valuable resource for the community.

O7 Characterization of the brain's dynamical repertoire in the psychedelic state

Louis-David Lord¹*, Paul Expert², Robin Carhart-Harris³, Morten Kringelbach¹, and Joana Cabral⁴

¹University of Oxford, Department of Psychiatry, Oxford, United Kingdom
 ²Imperial College London, Centre for Mathematics of Precision Healthcare, London, United Kingdom
 ³Imperial College London, Psychedelic Research Group, London, United Kingdom
 ⁴University of Minho, Life and Health Sciences Research Institute (ICVS), School of Medicine, Braga, Portugal

Brain activity can be understood as the exploration of a dynamical landscape of activity configurations over both space and time. This dynamical landscape may be defined in terms of spontaneous transitions within a repertoire of discrete metastable states of functional connectivity (FC), or "FC states", which underlie different mental processes. It however remains unclear how the brain's dynamical landscape might be disrupted in altered states of consciousness, such as the psychedelic state. The present study investigates changes in the brain's dynamical repertoire in a rare fMRI dataset consisting of healthy participants intravenously injected with the psychedelic compound psilocybin; the active compound in magic mushrooms. We employed a data-driven approach to study brain dynamics in the psychedelic state, which focuses on the dominant FC pattern captured by the leading eigenvector of dynamic FC matrices, and enables the identification of recurrent FC patterns ("FC-state"), and their transition profiles over time. We found that a FC state closely corresponding to the fronto-parietal control system was strongly destabilized by the drug, while transitions toward a globally synchronized FC state were enhanced. These differences between brain state trajectories in normal waking consciousness and the psychedelic state suggest that psilocybin induces an alternative type of unconstrained functional integration at the expense of locally segregated activity specific networks supporting executive function. These results provide a mechanistic perspective on the acute psychological effects of psychedelics, and further raise the possibility that mapping the brain's dynamical landscape may help guide pharmacological interventions in neuropsychiatric disorders.

O8 Understanding the bispectrum as a measure of cross-frequency coupling

Christopher Kovach*

University of Iowa, Caltech, Iowa City, IA, United States

Interest in the origin and significance of cross-frequency coupling in electrophysiological signals has grown rapidly over the last several years, with particular emphasis on phase-amplitude coupling (PAC). Much of this recent attention has focused on measures of PAC obtained from filtered analytic signals through the comparison of phase and analytic envelope. As use of these measures has increased, so has an appreciation of their ambiguities, attested by an expanding cautionary literature on the topic.

Meanwhile, "classical" statistically motivated measures of cross-frequency coupling derived from spectral representations of higher moments have remained at the periphery of the latest surge of attention, due in large part to a common perception that such measures are comparatively difficult to interpret and that they relate to a form of cross-frequency coupling distinct from PAC. Recently, we have shown that common PAC measures are, in fact, fundamentally normalized bispectral estimators which yield smoothed estimates of the true signal bispectrum [1]. Differences between the measures relate to properties of the respective smoothing kernels. In light of this observation, classical bispectral estimators can claim a number of advantages over recently introduced PAC measures, including more favorable bias properties and freedom from the constraints on range and resolution that are inherent in PAC measures.

Interpretation of the bispectrum is commonly explained in terms of "quadratic" phase coupling between spectrally narrow signal components; in demonstrating the relationship to PAC measures, we develop an alternative approach to interpretion through a decomposition of the signal into spectrally broad transient components. The relationship between PAC measures and the bispectrum can be understood by considering the case of a low-frequency transient, corresponding to the "slow" oscillation (SO), accompanied by a transiently windowed high-frequency "fast" oscillation (FO). As detailed in Figures 1 and 2, windowing of the FO at the scale of the SO implies that the the bispectrum contains a straightforward representation of the spectrum of the SO and the power spectrum of the FO, from which both might be directly recovered to good approximation. Moreover, within the range of the FO, the phase bispectrum encodes the relative delay between the SO and the FO modulating window. With these insights we develop guidelines for the evaluation of PAC from bispectral statistics. This framework addresses a number of the recently identified limitations and ambiguities of PAC measures.

Finally, some extensions of this framework towards the blind recovery of recurring transient signal features are briefly considered. The feasibility of this application is demonstrated through the identification of auditory evoked responses in human intracranial recordings from both controlled stimuli (click trains) and uncontrolled ecologically meaningful stimuli (a video soundtrack) with no foreknowledge of the stimulus.

References

[1] Kovach CK, Ova H, Kawasaki H. The bispectrum and its relationship to phase-amplitude coupling. Neuroimage 2018, 173, 518-539

O9 Spinal interneurons and locomotor speed and gait control in quadrupeds

Ilya Rybak*, Simon Danner, and Natalia Shevtsova

Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, PA, United States

To effectively move in a complex and dynamic environment, limbed animals should vary locomotor speed and adapt gaits to the desired speed and the environment. With increasing locomotor speed, quadrupedal animals, including mice, switch locomotor gait from walk to trot and then to gallop and bound. Centrally, the locomotor gaits are controlled by interactions between four central pattern generators (CPGs) located on the left and right sides of the lumbar and cervical enlargements of the cord, and each producing rhythmic activity controlling one limb. The activity of these CPGs are coordinated by commissural interneurons (CINs), projecting across the midline to the contralateral side of the cord, and by long propriospinal neurons (LPNs) that connect the cervical and lumbar CPG circuits in both directions.

We use computational modeling to investigate how the CIN and LPN connections between the cervical and lumbar, left and right CPGs can be organized and what roles different CIN and LPN pathways play in the control and speed-dependent expression of different gaits. Our model contains four rhythm generators (RGs) with left-right cervical and lumbar CIN interactions and homolateral and diagonal ascending and descending LPN interactions. These interactions are organized via several interneuronal pathways mediated by genetically identified neuron types and are based on their suggested functions and connectivity. Supraspinal (brainstem) drives excite all RGs, thereby controlling oscillation frequency, and inhibit some CINs and LPNs, which allows the model to reproduce the speed-dependent gait transitions observed in the intact mice [1].

The model reproduces the experimentally observed loss of particular gaits after selective removal of genetically identified neurons (V2a, V0V, or all V0) and the speed-dependent disruption of hind limb coordination after deletion of ascending (cervical-to- lumbar) LPNs [2]. The model suggests that (1) V0D and V0V CINs together secure left-right alternation, whereas V3 CINs promote left-right synchronization, and that (2) V0D LPNs support diagonal alternation, whereas V0V LPNs promote diagonal synchronization. Thus, V0D CINs and LPNs together stabilize walk and V0V CINs and LPNs stabilize trot. The transition from trot to gallop and bound occurs when the activity of V3 CINs overcomes the activity of (brainstem-drive inhibited) V0V CINs and diagonal LPNs.

Our simulations have also shown that external inputs to CINs and LPNs, other than supraspinal drives controlling locomotor frequency, can induce gait changes independent of speed. These inputs may represent activities of sensory afferents, which is consistent with multiple experimental data showing that CINs and LPNs receive direct and indirect inputs from sensory afferents. Based on the results of these simulations we suggest that CINs and LPNs represent the main neural targets for different local/intraspinal, supraspinal, and sensory inputs to control interlimb coordination and adjust locomotor gait to various internal and external conditions.

The model proposes a series of testable predictions, including the anticipated effects of the deletion of particular identified types of CINs and LPNs, and can be used as a test bed for simulating various spinal cord perturbations and injuries.

References

[1] Bellardita C, Kiehn O. Current Biology 2015, 25:1426-1436.

[2] Ruder L, Takeoka A, Arber S. Neuron 2016, 92:1063-1078.

O10 A simplified model of network bursts in the pre-Botzinger complex

Yury Sokolov*, Jonathan Rubin

University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States

Network (population) bursts are a signature neuronal activity in a critical brainstem region for respiratory rhythm generation, the pre-Botzinger complex (pre-BotC). During the initiation of a network burst, the pre-BotC shows a consistent pattern of dynamic transitions. Starting with mostly silent neurons, the pre-BotC transitions to an intermediate state with a positive fraction of firing neurons that may include tonically spiking and bursting neurons. When a sufficient number of neurons becomes engaged in firing, the pre-BotC network finally undergoes a transition to a population burst, characterized by a high fraction of simultaneously bursting neurons.

Over the last few decades several models of population bursts in the pre-BotC have been proposed, including conductance-based models featuring various ionic currents, such as INaP and ICAN. While the main objective of these models was to identify the bio-physical driving sources underlying network burst initiation, the role of the synaptic connection patterns in shaping neuronal activity has been relatively overlooked. The main reason for this omission is that the models are too complicated for a full analytical treatment and, due to computational limitations, it is difficult to gain full insight into the influence of connectivity.

To overcome these obstacles, we propose a simplified model, which is based on a bootstrap percolation process, and is defined as follows. For a given graph, every node has three possible states: inactive, weakly- active, and fully-active, which correspond to silence, tonic spiking and bursting, respectively. We initialize all nodes to the weakly-active state with probability p1 and to the fully-active state with probability p2, independently of other nodes. As the process evolves, an inactive node will transit to the weakly-active state if the amount of activity among its neighbors exceeds a threshold k1, and if the amount is greater than k2, it will transit to the fully-active state. Similarly, a weakly-active node becomes fully-active if the amount of activity among its neighbors exceeds k2. Nodes cannot reduce their activity levels, and those nodes that are fully-active will not change their states until the end of a trial.

We analyze this process analytically and computationally on various random graph models and address three questions. First, we determine values p1 and p2 as functions of k1 and k2 for which the network reaches a population burst at the end of a trial. Our findings suggest possible reasons why the network may fail to generate a population burst after the deletion of a fixed fraction of arbitrary nodes in the network, which is consistent with laser ablation of rhythmogenic pre-BotC (Dbx1) neurons in experiments. Second, we investigate how structural features of different graph models affect the duration of the process. Lastly, we describe how using nodal measures we may identify nodes that, when activated initially, are particularly well suited to ignite a population burst. This result shows that local properties of graphs are good descriptors of the spread of bursting activity and also addresses the extent to which successive population bursts may feature similar or different initiation mechanisms.

O11 Traveling waves in single cortical regions: mechanisms and emerging computational principles

Lyle Muller*, Terrence Sejnowski

Salk Institute for Biological Studies, Computational Neurobiology Laboratory (CNL), La Jolla, CA, United States

With new multichannel recording technologies, neuroscientists can now record from single cortical regions with high spatial and temporal resolution. Early recordings during anesthesia found spontaneous and stimulus-evoked waves traveling across single cortical regions. For a long time, however, these waves were thought to disappear in awake animals and during high-input regimes. By introducing new signal processing methods for moment-by-moment detection and characterization of spatiotemporal patterns under noise, our recent work has found that small visual stimuli evoke waves traveling out from the point of thalamocortical input to primary visual cortex in the awake monkey [1]. Further, using a measure of directed information transfer across recording sites in V1 of anesthetized monkey, another group has found that traveling waves can influence intracortical dynamics during viewing of natural stimuli [2]. These results indicate that traveling waves can play a role in organizing neural activity during natural sensory processing. Their overall computational role in sensory cortex, however, remains poorly understood.

Here, we introduce a spiking model that captures a general network-level mechanism for traveling waves in cortex. We study networks in the self-sustained activity regime [3], where conductance-based networks of neurons can create an internally generated noise [4] consistent with the irregular-asynchronous (IA) background activity state in cortex [5]. We find that a microscopic property – the axonal conduction velocity – profoundly controls the spatiotemporal structure of the spontaneous background state. While previous work has generally considered the time delays from intraregional recurrent fibers to be negligible, these can range up to tens of milliseconds over a few millimeters of the cortical surface, and their inclusion shapes self-sustained activity patterns into spontaneous traveling waves matching those observed in recordings from cortex. By studying networks from 104 to 106 neurons through a range of connectivity regimes, from very sparse (100 synapses/cell) to that found in cortex (10,000 synapses/cell, [6]), we identify spatiotemporal patterns ranging from *dense waves*, where the fraction of individual neurons participating in a passing wave is nearly unity, to *sparse waves*, where this fraction becomes very low. The sparse wave regime offers a unique operating mode, where many waves can coexist while weakly interacting during their propagation across the network. Finally, in collaboration with the laboratory of John Reynolds (Salk Institute), we show how spontaneous, sparse traveling waves can affect visual processing in the awake marmoset, leading to dynamic shifts in perceptual thresholds.

References

[1] Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nature Communications, 2014, 5.

[2] Besserve M, Lowe SC, Logothetis NK, et al. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer. PLoS Biology, 2015, 13.

[3] Kumar A, Schrader S, Aertsen A, Rotter S. The High-Conductance State of Cortical Networks. Neural Computation, 2008,20(1), 1-43.

- [4] Destexhe, Contreras. Science, 314, 2006.
- [5] Brunel. Journal of Computational Neuroscience, 8, 2000.
- [6] Braitenberg, Schüz. Springer Press, 1998.

O12 Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocampus

Daniel Levenstein^{1*}, György Buzáki, and John Rinzel²

¹New York University, Neuroscience Institute, New York, NY, United States ²New York University, Center for Neural Science & Courant Institute of Mathematical Sciences, New York, NY, United States

During non-rapid eye movement (NREM) sleep, the neocortex continuously alternates between states of neuronal spiking (UP states) and inactivity (DOWN states). Similarly, the hippocampus also shows continuous alternations between brief periods of neuronal activity (SPW-Rs) and relative inactivity. While the durations of active/inactive states are dramatically different in the two regions, the hippocampus and neocortex are both cortical tissue and are under similar neuromodulatory influence during NREM. Thus, it prompts one to wonder whether the neocortical UP/DOWN states and hippocampal SPW-Rs might be explained by similar mechanisms. Furthermore, the mechanisms by which alternation dynamics in the two regions interact to support NREM function are unclear. To address these questions, we used an idealized firing rate model of UP/DOWN alternations with four distinct dynamical regimes, which are distinguished by the stability or transience of UP/DOWN states and encompass those seen in previous studies. By directly matching model dynamics with experimental observations in naturally-sleeping rats, we found that the alternation dynamics observed in neocortex and hippocampus during NREM reflect two distinct regimes of excitable activity that show characteristically asymmetric durations of UP/DOWN states. Specifically, we find that the neocortical dynamics reflect a stable UP state interrupted by transient DOWN states (slow waves), while the hippocampal dynamics reflect a stable DOWN state with transient UP states (sharp waves). We further considered the effects of including an inhibitory population in the model. We find that under conditions of balanced excitation and inhibition, neocortical UP->DOWN transitions can be evoked by excitatory input and are followed by a high frequency oscillation at the DOWN->UP transition, as is observed in vivo. We propose that during NREM sleep, hippocampal and neocortical populations are in excitable states, from which small fluctuations can evoke the transient events that support NREM function. The excitable dynamics we describe suggest a mechanism by which the two structures could show a form of communication through "stochastic synchronization" of spontaneous population events during NREM sleep.

O13 Biological mechanisms for learning: A computational model of olfactory learning in the Manduca sexta moth

Charles Delahunt¹*, Jeffrey Riffell², and J. Nathan Kutz¹

¹University of Washington, Deparment of Applied Mathematics, Seattle, WA, United States ²University of Washington, Department of Biology, Seattle, WA, United States

The moth olfactory network, which includes the antennal lobe (AL), mushroom body (MB), and ancillary structures, is a relatively simple biological neural system that is capable of learning. Its structural features include motifs that are widespread in biological neural systems, such as a cascade of networks, large dimension shifts from stage to stage, sparsity, noise, and randomness. Learning is enabled by a neuromodulatory reward mechanism of octopamine stimulation of the AL, whose increased activity induces rewiring of the MB through Hebbian plasticity.

The goal of this work is to analyze how these various components interact to enable learning. To this end, we build a computational model of the moth olfactory network, including the dynamics of octopamine stimulation, which is closely aligned with the known biophysics of the AL-MB and with in vivo AL firing rate data of moths during learning. To our knowledge this is the first full, end-to-end neural network model that demonstrates learning behavior while also closely matching the structure and behavior of a particular biological system. The model is able to robustly learn new odors, and provides a valuable tool for examining the role of octopamine in learning. This octopamine mechanism during learning is of particular interest, since how it promotes the construction of new codes in the MB is not understood.

Specifically, our experiments elucidate key biological mechanisms for fast learning from noisy data that rely on an interaction between cascaded networks, sparsity, Hebbian plasticity, and neuromodulatory stimulation by octopamine.

O14 Modeling of TRP channel mediated noxious cold sensation in Drosophila sensory neurons

Natalia Maksymchuk*, Atit Patel, Nathaniel Himmel, Daniel Cox, and Gennady Cymbalyuk

Georgia State University, Neuroscience Institute, Atlanta, GA, United States

Intracellular Ca2+ concentration usually correlates with the neuronal pattern and behavioral response. However, noxious cold sensation in Drosophila presents a paradox with these associations. Pkd2 and Trpm channels are required to trigger nociceptive full body contraction (CT) under acute cold [1]. *Trpm* mutants exhibit an increase in [Ca2+]i levels above control and display reduction of CT behavior, whereas *Pkd2* mutants showed reductions in [Ca2+]i level and inhibition of behavior [1].

We developed a Hodgkin-Huxley-type model of the cold sensitive CIII neurons to investigate interaction of Pkd2, Trpm and SK currents and to explain the experimental paradox. Our main mechanism assumes that the mutation of *Trpm* is homeostatically accompanied by a compensatory increase of the total Pkd2 current conductance, which leads to an amplified rise of [Ca2+]i under noxious cold temperatures. This higher [Ca2+]i activates stronger SK current which hyperpolarizes the membrane potential and suppresses spiking. This leads to inhibition of the stereotyped CT behavior under noxious cold stimuli. This model prediction is supported by the experiments, which showed 2-fold increase of *Pkd2* mRNA levels in Trpm mRNA levels was observed in *Pkd2* mutants.

Basic models of the CIII neuron describing responses of Control, *Trpm* and *Pkd2* mutants show transitions from silence at room temperature to spiking activity below 18 degrees Celsius, but have distinct features. Models of Control and *Trpm* mutants reach a maximum spike frequency near 14.5 degrees Celsius, while *Pkd2* mutants exhibited a maximum frequency at 6 degrees Celsius and had a smaller frequency compared to Control and *Trpm* mutants. The decrease of maximum frequency in *Pkd2* mutants as well as absence of spiking activity for most of the temperature range in *Trpm* mutants may explain the inhibition of CT behavior under noxious cold.

The [Ca2+] responses of the three models describing control, *Trpm* and *Pkd2* mutants are in agreement with the corresponding experimental data [1]. [Ca2+]i signal of CIII neurons under noxious cold is the strongest in *Trpm* mutants and the weakest in *Pkd2* mutants. Thus, the model and experimental results suggest that cold-evoked CT behavior is tuned to an optimal Ca2+ level which does not always functionally represent level of neuronal excitation.

Also, the basic model currently exhibits a wide spectrum of qualitatively different activity regimes. Depending on the parameter set, the model could show different regimes which are associated with different levels of [Ca2+]i and could be arranged into an alternative scheme of the temperature coding following the sequence of transitions between regimes: small amplitude spiking, period doubling cascade, bursting, large amplitude spiking, and rest state along with the temperature going down. These two coding schemes provide robust and generic mechanisms of coding modality-specific activity patterns by coordinated modality-specific activation of two TRP currents.

Acknowledgements

This research was supported by NIH grant NS086082 and a GSU Brains and Behavior Seed Grant (DNC), N.H. is a Brains and Behavior and Honeycutt Fellow; A.A.P. is a 2CI Neurogenomics and Honeycutt Fellow.

References

[1] Turner HN, Armengol K, Patel AA, et al. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila. Current Biology 2016, 26(23), 3116-3128.

O15 A geometric attractor mechanism for the self-organization of entorhinal grid modules

Louis Kang¹*, Vijay Balasubramanian²

¹University of California, Berkeley, Redwood Center for Theoretical Neuroscience, Berkeley, CA, United States ²University of Pennsylvania, Computational Neuroscience Initiative, Philadelphia, PA, United States

The grid system of the mammalian medial entorhinal cortex (mEC) exhibits striking modularity. Rat grid cell recordings reveal that spatial grid scales cluster around discrete values separated by constant ratios reported in the range 1.3-1.8. Although this modular organization has been shown to be a robust and efficient encoding of spatial location, its origin is unknown. We present the first proposed mechanism through which geometric sequences of grid scales arise naturally. A series of continuous attractor networks along the longitudinal mEC axis that would otherwise generate a smooth distribution of grid scales forms modules separated by discrete jumps in scale when excitatory connections are introduced. Moreover, constant scale ratios between successive modules arise through robust geometric relationships between commensurate triangular grids, whose lattice constants are separated by [sqrt(1.7)] or other ratios, or between grids containing local lattice modulations called discommensurations. These relationships persist in single neuron spatial rate maps due to faithful path integration and are unaffected by perturbations to model parameters. We speculate on how excitatory connections between attractor networks can be realized by the known architecture of the mEC and suggest analyses and experiments that test our model.

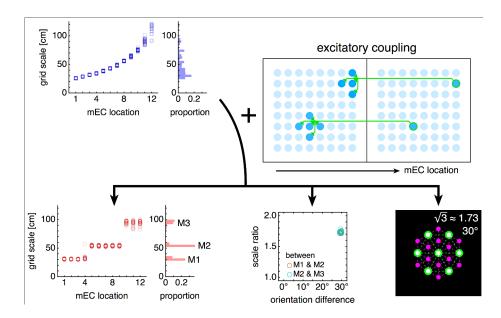


Figure 1: Grid cells with smoothly distributed scales self-organize into discrete modules when excitatory connections along the medial entorhinal cortex (mEC) are added. Adjacent modules have fixed scale ratios and orientation differences due to robust geometric relationships between commensurate triangular lattices.

O16 Simulating in vivo context-dependent recruitment of CA1 hippocampal interneuron specific 3 (IS3) interneurons

Alexandre Guet-McCreight*, Frances Skinner

Krembil Research Institute, Division of Fundamental Neurobiology, Toronto, Canada

Obtaining recordings from individual cells during behaviour is technically challenging, especially for the diverse interneuron subtypes that tend to be smaller, less accessible, and less identifiable relative to excitatory cells. As such, it is difficult to determine inhibitory cell contributions but it is clear that consideration of interneuron subtypes is critical to understanding brain function and behavior (Kepecs & Fishell, 2014). To address this, we use computational approaches. We focus on the hippocampal CA1 interneuron specific 3 (IS3) cell, a cell type that has not yet been recorded from in vivo. Notably, though IS3 cells represent a small fraction of interneurons in CA1 hippocampus, they possess unique circuitry properties in that they only inhibit other inhibitory neurons, such as Oriens Lacunosum Moleculare (OLM) interneurons. In vitro, photo-activation of IS3 cells at theta frequencies has been shown to elicit theta-timed spiking in OLM cells (Tyan et al, 2014). To explore the potential contributions of IS3 cells during in vivo contexts, we use multi-compartment IS3 cell models to generate predictions of input populations that could either enhance or dampen IS3 cell activities during behavior.

We have developed data-driven multi-compartment models of IS3 cells with active dendritic properties (Guet-McCreight et al, 2016), determined realistic synaptic parameters along the dendritic morphology of the models (Guet-McCreight et al, 2017), and estimated numbers of active synapses and presynaptic spike rates to generate in vivo-like states for IS3 cell models. Here, we consider context-dependent recruitment of IS3 cells during simulated states of theta rhythms and sharp-wave associated ripples (SWRs). During these states, we use our models to predict the contributions of different presynaptic inhibitory and excitatory input populations.

Our results show that excitatory theta-timed inputs from CA3 and entorhinal cortex can modulate the timing of IS3 cell spiking during theta rhythms. Moreover, depending on their relative contributions, the timing of the IS3 cell model's spiking can occur anywhere between the rising phase and peak of the theta cycle. As well, we show that inhibitory inputs can dampen spike recruitment of IS3 cells regardless of phase, though less so for inhibitory inputs that are the most antiphase relative to excitatory inputs. For our simulated SWR context, we show that transiently bursting CA3 inputs alone are sufficient to recruit the IS3 cell model to spike. We also show that the presence of feedforward inhibition on the proximal dendrites of the model can sufficiently dampen IS3 cell spiking during a SWR context. In summary, we have simulated in vivo-like contexts where IS3 cell spike recruitment can be either enhanced or dampened. Our results highlight possible IS3 cell spiking scenarios and thus their potential contributions to brain function and behavior.

References

Guet-McCreight A, et al. (2016). eNeuro. 3(4). pii: ENEURO.0087-16.2016.

Guet-McCreight A, et al. (2017). F1000 Research 2017. 6:1552 (poster).

Kepecs A, Fishell G. (2014). Nature. 505(7483):318-26.

Tyan L, et al. (2014). J Neurosci. 34(13):4534-47.

O17 Quantitative simplification of detailed microcircuit demonstrates the limitations to common point-neuron assumptions

Christian A Rössert¹, Giuseppe Chindemi¹, Andrew Davison², Dimitri Rodarie¹, Nicolas Perez Nieves³, Christian Pozzorini¹, Csaba Eroe¹, James King¹, Taylor Newton¹, Max Nolte¹, Srikanth Ramaswamy¹, Michael Reimann¹, Willem Wybo¹, Marc-Oliver Gewaltig¹, Wulfram Gerstner¹, Henry Markram¹, Idan Segev⁴, and Eilif Muller^{1*}

¹École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland
 ²CNRS, Unité de Neuroscience, Information et Complexité, Gif sur Yvette, France
 ³Imperial College London, Department of Physics, United Kingdom
 ⁴Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel

A first-draft detailed simulation of a piece of the rat neocortex has recently been reported by an international collaboration [1]. This work integrated the current state of experimental knowledge on the detailed 3D anatomy and physiology of the various neuron types, and their synaptic properties and connectivity, and was shown to reproduce findings from a range of in vivo experiments reported in the literature without parameter tuning. On the other hand, for large-scale network simulations, point-neuron models are typically used for describing and analyzing network dynamics and functions. The properties and connectivity structure of point neuron models generally are not constrained by biological data and thus use ad hoc simplifying assumptions. This makes some of the mathematically tractable models somewhat disconnected from experimental neuroscience. To bridge the gap between these two extremes (the detailed and the oversimplified), we aimed to derive point-neuron network models from data-driven detailed network models in an automated, repeatable and quantitatively verifiable manner. The simplification occurs in a modular workflow, in an in vivo-like state. First, synapses are displaced from dendrites to the soma while correcting for dendritic filtering using low-pass filters for the synaptic current numerically calibrated for each dendritic compartment. Next, point-neuron models for each neuron in the microcircuit are fitted to their respective morphologically detailed counterparts. Here, generalized integrate-and-fire point neuron models are used, leveraging a recently published fitting toolbox [2]. The fits are constrained by currents and voltages computed in the morphologically detailed reference neurons with soma-displaced synapses, as described above. Benchmarking the simplified network model to the detailed microcircuit model for a range of simulated in vivo and in vitro protocols, we found good agreement for both quantitative and qualitative aspects. Our automated approach not only makes it possible to continuously update the simplified circuit as the detailed network integrates new data, but the modularity of the simplification process also makes it applicable to other point neuron and synapse models, network models, and simulators. In addition to providing an extensive assessment of validity for carefully reduced point neuron network models, our approach is fundamentally important and informative, in particular in cases when network functionalities are lost during the simplification pipeline. By taking the simplification further to evaluate common simplifying assumptions, we further illustrate the contributions of specific synaptic and cellular dynamics to the overall response of the detailed network, revealing limitations for several common approaches.

References

[1] Markram H, Muller E, Ramaswamy S, et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell 2015, 163(2),456-492.

[2] Pozzorini C, Mensi S, Hagens O, et al. Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLOS Computational Biology 2015, 11(6).

O18 A novel synaptic plasticity rule for detailed model neurons with realistic dendrites

Christian Ebner¹, Claudia Clopath², Peter Jedlicka^{3*}, and Hermann Cuntz⁴

 ¹ Ernst Strüngmann Institute, Frankfurt, Germany
 ² Imperial College London, Department of Bioengineering, London, United Kingdom
 ³ Justus Liebig University, Faculty of Medicine, Giessen, Germany
 ⁴ Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt/Main, Germany

Numerous experiments have been conducted in the past in order to monitor the complex interactions that drive activity-dependent long-term plasticity of synapses. Spike timing, firing rate and synaptic location have been found to be important factors that dynamically contribute to the outcomes of plasticity induction protocols. While several theoretical models that implement plasticity rules already exist, they have not yet been used in depth to study plasticity in neuron models with detailed morphology. Here, we extend previous phenomenological voltagebased plasticity rules by developing a new framework based on three signaling pathways. We apply it to a L5 pyramidal cell model with active dendritic properties and realistic propagation of voltage. We show that our novel rule not only reconciles outcomes of several experiments but also predicts spatiotemporal patterns of plasticity that are characteristic for individual stimulation protocols and their impact on local processes at the synapse, including protocols inducing local plasticity in tuft dendrites. Due to this focus on local voltage signals, our framework can explain synaptic plasticity in the absence of postsynaptic action potentials, as suggested in recent studies. We thereby link experimental results that would intuitively seem to require entirely different rules, showing that a unifying rule might explain the vast majority of experiments in cortical pyramidal cells if key biophysical pathways are taken into account. Ultimately, we can now study how the cell-type specific electrotonic properties can explain differences in emerging plasticity by incorporating our plasticity rule in a variety of existing detailed compartmental models such as models of hippocampal pyramidal or granule cells. To summarize, a simple plasticity rule that utilizes pre- and postsynaptic plasticity pathways can explain experimental results with a large variety of induction protocols when the plasticity rule is incorporated in the compartmentalized structure of a detailed dendritic model.

O19 Assisted construction of hybrid circuits: making easy the implementation and automation of interactions between living and model neurons

Manuel Reyes-Sanchez, Irene Elices Ocon*, Rodrigo Amaducci, Francisco B Rodriguez, and Pablo Varona

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

Closed-loop interactions with the nervous system are a powerful approach to characterize neural dynamics and control network functions [1,2]. In particular, neuron models can interact with living neurons in hybrid circuits once proper adaptation is achieved in both directions [3,4]. Such adaptations are not easy to accomplish in a manual trial-and-error process, and are better determined with closed-loop protocols based on real-time event detection [5] and well-defined interaction goals and performance measurements. This work presents a set of algorithms for the assisted construction of hybrid circuits. These algorithms have been implemented in RTHybrid, an open-source cross-platform real-time model library [6].

Our real-time algorithms for assisted construction of hybrid circuits are based in a general closed-loop paradigm designed to be modular and effective. The algorithms perform as a function of their online measured input parameters the following tasks: (1) temporal and amplitude scaling, (2) drift compensation, (3) synaptic tuning/calibration, (4) model turning/calibration, (5) automatic activity control, (6) automatic mapping of the dynamics. The temporal and amplitude scales are evaluated and matched online to create compatible working regimes between the model and living neurons [4]. All protocols use three steps: event detection, activity and connection characterization and target performance evaluation. The events detected online include: spikes, bursts, hyperpolarization intervals, voltage ranges, temporal structures, phases, etc. The interaction characterization measures include event timings, instantaneous periods, synchronization levels, target phases, and working/dynamic range assessments. When the interaction goal is not fulfilled, the target evaluator algorithm changes in an informed and automatic manner the parameters of the hybrid circuit. Our algorithms have been validated in a hybrid circuit to study the presence of dynamical invariants in CPGs.

In conclusion, hybrid circuits require experiment-specific adaptations to work properly, and the parameters of the implementation must be evaluated dynamically on each preparation and even adapted during the same experiment. These algorithms can also be used to automatically map the parameter space to achieve a given goal, and in general to control/explore/unveil bifurcations and circuit dynamics.

Acknowledgements

We acknowledge support from MINECO/FEDER DPI2015-65833-P, TIN2014-54580-R, TIN2017-84452-R (http://www.mineco.gob.es/) and ONRG grant N62909-14-1-N279.

References

[1] Chamorro P., Muñiz C., Levi R., Arroyo D., Rodríguez F.B. & Varona, P. (2012). PLoS ONE, 7(7).

[2] Elices I., & Varona P. (2015), 170, 55-62.

[3] Ambroise M., Buccelli S., Grassia F., Pirog A., Bornat Y., Chiappalone M., et al. (2017). Artif. Life Robot. 22, 398-403.

[4] Reyes-Sanchez M., Elices I., Amaducci R., Muñiz C., Rodríguez F.B., Varona P. BMC Neuroscience 2017, 18 (Suppl 1):P281 (CNS 2017).

[5] Varona P., Guardeño D. A., Nowotny T., & Rodríguez F.B. (2016). Online event detection requirements in closed-loop neuroscience. In Closed Loop Neuroscience (pp. 81-91).

[6]. Amaducci R., Muñiz C., Reyes-Sanchez M., Rodríguez F.B., Varona P. BMC Neuroscience 2017, 18 (Suppl 2):P104 (CNS 2017).

[7] Elices I., Arroyo D., Levi R., Rodríguez F.B, Varona P. BMC Neuroscience 2017, 18 (Suppl 1):P282 (CNS 2017).

O20 Deciphering the evolutionary route to the first neurons

Oltman de Wiljes^{1*}, Ronald van Elburg², and Fred Keijzer¹

¹University of Groningen, Theoretical Philosophy, Groningen, Netherlands ²University of Groningen, Faculty of Science and Engineering, Groningen, Netherlands

We do not yet know how the very first nervous systems and their constituting neurons evolved within the animal kingdom. One important difficulty comes from the lack of examples of intermediate neuronal stages within currently existing animals. Such examples would bridge the gap between non-neuronal and neuronal configurations. However, on the one hand there are basic animals like sponges and placozoa who do not have neurons or a nervous system. On the other hand, even the most basic forms of animals with nervous systems, such as jelly-fish (cnidarians) and comb-jellies (ctenophores) already exhibit a nervous system built from complete neurons. So far it is unknown how the three fundamental ingredients of modern neurons—electrical signaling, synapses, and neuronal elongations—came together in the first neurons and why this happened. Compared to modern animals, very little is known about the earliest possessors of nervous systems. Essentially modern nervous systems complete with eyes and a central nerve cord are known from the beginning of the Cambrian period, so the very origin of nervous systems must predate that period. However, Precambrian animal fossils are enigmatic and difficult to interpret, providing insufficient information about the behavioural and neuronal makeup of these organisms. Molecular phylogenetic studies do provide important clues concerning the cellular building blocks present to these animals but do not allow a clear view of the organization of the animals living in these times.

Computational neuroscience provides an important additional instrument to enhance our understanding of the neuronal and behavioural mechanisms that were potentially present in very early animals. Modelling very basic animal configurations, using primitive features such as cell-to-cell signalling that can be assumed to have been present at this stage, provides a way to assess the behavioural capacities of such configurations. Such modelling also allows a step by step investigation of potential evolutionary sequences of various proto-neuronal features and the behavioural effects they induce. All in all, these models provide rigorous thought experiments that enable a systematic investigation of various (proto-)neuronal features on coordination in a simple body.

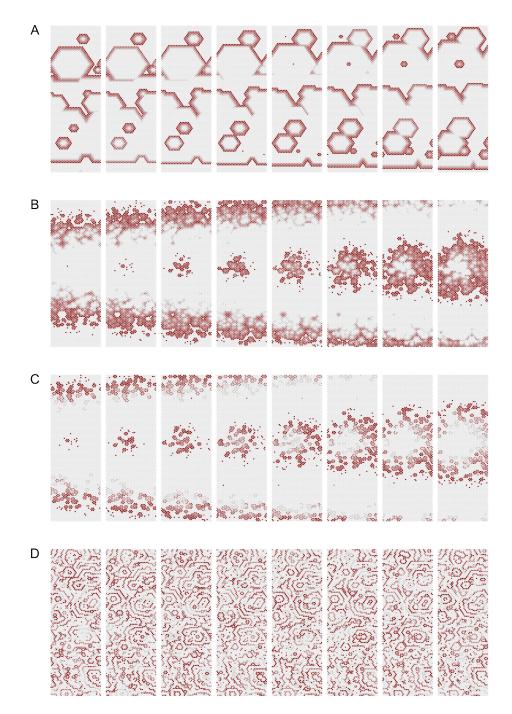


Figure 1: Various degrees of emergent coordination on a larger (32 cells in circumference, 128 in length) wormshaped body. Four different experiments, showing 8 frames each: A, lacking elongations; B, 10% of cells exhibiting elongations; C, same as B, but no nearest-neighbour connections between cells lacking elongations; D, same as B, but with very low transmission speed.

O21 Community models as the ultimate objective (and success) of computational neuroscience: exempli gratia: The cerebellar Purkinje cell

James Bower*

Southern Oregon University, Department of Biology, Ashland, OR, United States

On its main web page, the Organization for Computational Neuroscience (OCNS) defines Computational Neuroscience as "the study of brain function in terms of the information processing properties of the structures that make up the (sic) nervous system". As nervous systems ARE information processing structures, this definition begs the question how the field of Computational Neuroscience distinguishes itself from neuroscience as a whole? The definition of Computational Neuroscience provided by OCNS makes an effort to addresses this conundrum by further defining CNS as "an interdisciplinary science that links the diverse fields of neuroscience, cognitive science and psychology with electrical engineering, computer science, mathematics and physics." In this presentation, I will propose that THE key concept underlying Computational Neuroscience is, in fact, the question of 'linkage'. More specifically, I will propose that 'linkage' should not be an abstract ideal, but instead, specifically requires the development of computation tools and devices as well as an attitude towards science that supports the development of "community models" defined as actual mathematical models shared and developed collaboratively across the community of those interested in a particular neuronal feature or component. While one can argue that standards for academic advancement and the current publication process favor isolated models developed by individual research groups which therefore, continue to dominate computational neuroscience, I will suggest that only shared community models can truly support scientific communication, coordination and collaboration. Further, of necessity, to be effective I will assert that these community models must be 'realistic', reflecting the actual physical and physiological structure of the components of the nervous systems being studied. Not only do community models of this type provide a basis for real collaboration, they also, in effect, represent the current state of our understanding of neuronal structure / function relationships mathematically. In this presentation, these assertions will be considered with respect to the development over the last 40 years of a model of the cerebellar Purkinje cell as one of the first computational models used across multiple laboratories as well as the historical context provided by the emergence of 'realistic' community models in Physics in the 16th century. In a companion submission, I will consider, with several of my long-term colleagues, how the development of shared simulation platforms when combined with a new approach to scientific publication can drive the development and use of community models.

Figure 1: The first poster created for the CNS meeting, intended to represent the initial somewhat disorganized state of the field.

Workshops

W1 Methods of Information Theory in Computational Neuroscience

Allen Institute Auditorium, Tue July 17 and Wed July 18, 9:00 to 18:00

Joseph T. Lizier, University of Sydney
 Viola Priesemann, Max Planck Institute for Dynamics and Self-organisation
 Justin Dauwels, Nanyang Technological University
 Taro Toyoizumi, RIKEN Brain Science Institute
 Alexander G Dimitrov, Washington State University
 Lubomir Kostal, Czech Academy of Sciences
 Michael Wibral, Goethe University, Frankfurt

Methods originally developed in Information Theory have found wide applicability in computational neuroscience. Beyond these original methods there is a need to develop novel tools and approaches that are driven by problems arising in neuroscience. A number of researchers in computational/systems neuroscience and in information/communication theory are investigating problems of information representation and processing. While the goals are often the same, these researchers bring different perspectives and points of view to a common set of neuroscience problems. Often they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuroscience and to exchange ideas and present their latest work. The workshop is targeted towards computational and systems neuroscientists with interest in methods of information theory as well as information/communication theorists with interest in neuroscience.

Please see our website http://bit.ly/cns2018itw for full abstracts, schedule and additional contributed talks (to be announced).

- Braden Brinkman (Stony Brook University, New York, US) "Signal-to-noise ratio competes with neural bandwidth to shape efficient coding strategies"
- Mireille Conrad (University of Geneva, Geneva, Switzerland) "Mutual information vs. transfer entropy in spike-based neuroscience"
- Benjamin Cramer (University of Heidelberg, Heidelberg, Germany) "Information theory reveals a diverse range of states induced by spike timing based learning in neural networks"
- Alexander Dimitrov (Washington State University Vancouver, Vancouver, US) "Modeling of perceptual invariances in biological sensory processing"
- Eva Dyer (Georgia Tech, Atlanta, US) "Finding low-dimensional structure in large-scale neural recordings"
- Justin Gardner (Stanford University, Stanford, US) "Optimality and heuristics for human perceptual inference"
- Jim Kay (University of Glasgow, Glasgow, UK) "Partial Information Decompositions based on Dependency Constraints"
- Joseph T. Lizier (The University of Sydney, Sydney, Australia) "Pointwise Partial Information Decomposition Using the Specificity and Ambiguity Lattices"
- Leonardo Novelli (The University of Sydney, Sydney, Australia) "Validation and performance of effective network inference using multivariate transfer entropy with IDTxl"
- Tatyana Sharpee (Salk Institute for Biological Studies, La Jolla, US) "Information-theoretic constraints on cortical evolution"
- Nicholas M. Timme (Indiana University, Bloomington, and Purdue University Indianapolis, US) "From neural cultures to rodent models of disease: examples of information theory analyses of effective connectivity, computation, and encoding"
- Taro Toyoizumi (RIKEN Brain Science Institute, Tokyo, Japan) "Emergence of Levy Walks from Second-Order Stochastic Optimization"

- Siwei Wang (Hebrew University of Jerusalem, Jerusalem, Isreal) "Closing the gap from structure to function with information theoretic design principles"
- Plus additional contributed talks ...

W2 Neuronal morphology and structure

Allen Institute 286/287, Tue July 17, 9:00 to 18:00

Alexander Bird, Ernst Strüngmann Institute and FIAS, Frankfurt André Castro, Ernst Strüngmann Institute and FIAS, Frankfurt Hermann Cuntz, Ernst Strüngmann Institute and FIAS, Frankfurt

Neurons are complex structures and their morphologies display both great diversity and the potential for remarkable specificity in function and connectivity. Theoretical neuroscience has always had a key role to play in analysing neuronal structure, starting with Cajal's insight that neurons must balance the material and functional costs associated with their dendritic trees. Recent advances in experimental techniques allow us to study dendrites from new perspectives, but have also created new challenges in reconstruction, quantification, and comparison. For example, large scale studies of connectivity have reinforced the importance of single cell morphology within microcircuits, whilst an ever-expanding library of genetic and physical manipulations shed new insights into the processes leading to the development of these morphologies. The goal of the workshop is to provide a resume of the state-of-the-art in experimental, computational and mathematical investigations into the morphology of neurons in a variety of systems.

- Uygar Sümbül (Allen Institute, Seattle, USA) "Quantifying neuroanatomy"
- Ruth Benavides-Piccione (Instituto Cajal, Madrid, Spain) "The microanatomy of pyramidal cells"
- Erik De Schutter (OIST, Okinawa, Japan) "The Purkinje cell dendrite causes its unique firing rate-dependent phase response curve"
- Lida Kanari (EPFL, Lausanne, Switzerland) "Randomness and structure in artificially generated neuronal networks"
- Kurt Haas (University of British Columbia, Vancouver, Canada) "Dynamic morphometrics: Rapid time-lapse imaging and quantification of experience-driven dendrite growth"
- Hollis Cline (Scripps Institute, San Diego, USA) "In vivo time-lapse imaging analysis of neuronal structure and functional plasticity"
- Casey Schneider-Mizell (Allen Institute, Seattle, USA) "The neuroanatomy of connectivity in the Drosophila larva"
- Staci Sorensen (Allen Institute, Seattle, USA) "Morphological, electrophysiological and transcriptional descriptions of cortical cell types"
- Sophie Laturnus (Universität Tübingen, Tübingen, Germany) "A systematic comparison of neuronal morphology representations for cell type discrimination"
- Hongkui Zeng (Allen Institute, Seattle, USA) "Morphology as a key feature for neuronal cell type classification"

W3 Bridging Spatial and Temporal Scales in Brain Connectomics

MOHAI Microsoft Lakefront Pavilion, Tue July 17, 9:00 to 18:00

Katharina Glomb, Lausanne University Hospital Joana Cabral, Oxford University

In this workshop we will explore Dynamic Functional Connectivity on different temporal and spatial scales. We aim to review recent results and put them in perspective to understand common points and discrepancies across different neuroimaging communities. In particular, we will target the difficulties faced by methodological approaches when bridging scales due to the differences in how neural dynamics are described.

As an example, similar results about the sources that contribute to dynamic connectivity patterns have been reported on different scales. On the one hand, there are changes in global coherence, sometimes described as standing or traveling waves. On the other hand, there are causal interactions between brain regions/neuronal populations which can be extracted by considering time delays. Ideally, the workshop will help to identify opportunities that have thus far remained unexplored.

- Amrit Kashyap (Georgia Tech, Atlanta, USA) "Brain dynamics viewed through BOLD, electrophysiology and computational modeling"
- Joana Cabral (University of Oxford, UK) "Mechanistic network models of MEG and fMRI functional connectivity"
- Louis-David Lord (University of Oxford, UK) "Characterization of the brain's dynamical repertoire in the psychedelic state"
- Sebastien Naze (IBM, Thomas J. Watson Research Center, Yorktown Heights, USA) "Sensitivity analysis of the connectome harmonics and implications in neurodegenerative diseases"
- Jeremie Lefebvre (Krembil Research Institute, Toronto, Canada) "State-Dependent Entrainment of Cortical Oscillations with Periodic Stimulation"
- Gijs Plomp (University of Fribourg, Switzerland) "Fast directed interactions between brain areas and cortical layers"
- Petra Ritter (Charite Berlin, Germany), TBA
- Katharina Glomb (CHUV, Lausanne, Switzerland) "Graph signal processing for anatomically constrained source-reconstructed EEG data"

W4 Models for Perceiving and Learning Time Intervals and Rhythms

Allen Institute Training Room, Tue July 17, 9:00 to 18:00

<u>Áine Byrne</u>, New York University John Rinzel, New York University Amitabha Bose, New Jersey Institute of Technology

Accurate time estimation is essential for survival, yet the neural bases remain elusive. Time processing has been widely studied in the context of decision making, language, memory and perception. Research on interval-timing, for sub to suprasecond scales, ranges from psychophysical experiments and imaging studies to theoretical models. Beat perception in music is particularly compelling, fast perception and learning of repetitive time intervals from 100 to 2000 ms. The abilities to recognize and predict rhythms appear inherent to humans. Hypotheses of neural mechanism involve sensory and motor area interaction (eg, listening and finger-tapping). We will bring together researchers that are developing models of timing and of prediction with frameworks that include drift-diffusion, neural resonance, coincidence detection and adapting neuronal oscillator circuits. We seek to promote discussion and linkage between the timing and prediction fields, both important for understanding beat perception.

- Jessica Grahn (Western University, Canada) "The role of beat perception in auditory sequence processing"
- Sorinel Oprisan (College of Charleston, USA) "Models of interval timing"
- · John Iversen (University of California San Diego, USA) "Audiomotor interactions in beat perception"
- Edward Large (University of Connecticut, USA) "How you got your groove: Modeling rhythm learning, perceptual narrowing, and enculturation"
- Sundeep Teki (University of Oxford, UK) "Contextual representation of time intervals in rhythmic sound sequences"
- Áine Byrne (New York University, USA) "A neuro-mechanistic model for beat generation"
- Hugo Merchant (National Autonomous University of Mexico, Mexico), "Neural population dynamics in the primate supplementary motor area during rhythmic tapping"
- Patrick Simen (Oberlin College, USA) "A drift-diffusion model of complex motor timing without a reset problem"

W5 Developing, Standardising and Sharing Large Scale Network Simulations

Allen Institute 288/289, Tue July 17, 9:00 to 12:30

Padraig Gleeson, University College London

A number of groups around the world are developing complex, experimentally constrained models of cortical function. Creating the software infrastructure to develop, simulate and share these types of models takes a significant amount of time for any of the groups involved and there can be a lot of overlap, duplication in work and repeated effort.

This workshop aims to highlight some of the initiatives currently underway to build detailed cortical models as well as those projects building the infrastructure to make it easier to develop, disseminate and compare the models. Attendees of this workshop will come away with a better idea of the state of the art in large scale cortical model development and the efforts underway to make these more accessible and reusable for other researchers.

The most recent program for the workshop can be found here: http://www.opensourcebrain.org/docs/Help/Meetings#CNS_2018

- Anton Arkhipov (Allen Institute, Seattle, USA) and Eilif Muller (Blue Brain Project, Switzerland) "Data-Driven Modeling of Brain Circuits and the SONATA Data Format"
- Markus Diesmann and Sacha van Albada (Jülich Research Centre, Germany) "Large scale model development from the NEST perspective"
- Salvador Dura-Bernal (SUNY Downstate Medical Center, Brooklyn, NY, USA) "Development of large scale data-driven network models in NetPyNE, a high-level interface to NEURON"
- Padraig Gleeson (University College London, UK) "Large scale cortical models in NeuroML format on Open Source Brain"
- Open Discussion: "How best to move forward and what needs of the community are not being met?"

W6 Neuroscience Gateway and Large Scale Neural Systems Simulations and Tools

Allen Institute 288/289, Tue July 17, 14:00 to 18:00

Amit Majumdar, University of California San Diego Subhashini Sivagnanam, University of California San Diego Ted Carnevale, Yale University

Large scale modeling and simulations, using supercomputing resources, are important components of computational neuroscience. Computational neuroscientists in the US, from the EU Human Brain Project and those involved with the recently (December, 2017) signed International Brain Initiative depend on High Performance Computing for research. The US NSF and NIH funded Neuroscience Gateway (NSG) project provides neuronal tools, pipelines, and libraries optimally implemented on HPC resources for the neuroscience community. NSG tools and libraries include NEURON, CARLSim, PGENESIS, NEST, Brian, PyNN, MOOSE, BluePyOpt, The Virtual Brain Pipeline, Matlab, EEGLAB, Freesurfer, Human Neocortical Neurosolver etc.; NSG provides tens of millions of supercomputing hours freely for computational neuroscientists, has over 600 users, and is a platform for dissemination of computational neuroscience tools. This workshop will bring together some of the developers of neuronal tools/libraries/pipelines available on NSG and neuroscience users that are using NSG for computational neuroscience research to discuss both tool development and research results enabled by NSG.

- Subhashini Sivagnanam, Kenneth Yoshimoto, Amit Majumdar (UCSD, La Jolla, CA, USA), Ted Carlevale (Yale U., New Haven, CT, USA) "Neuroscience Gateway Enabling Large Scale Simulations and Data Processing in Neuroscience"
- Robert McDougal (Yale U., New Haven, CT, USA) "Strategies for Parallel NEURON Simulations"
- Ting-Shuo Chou, Hirak J. Kashyap, Jinwei Xing, Stanislav Listopad, Emily L Rounds, Michael Beyeler, Nikil Dutt, Jeffrey L Krichmar (UCI, Irvine, CA, USA) "CARLsim 4: An Open Source Library for Large Scale, Biologically Detailed Spiking Neural Network Simulation using Heterogeneous Clusters"
- Alexandre Guet-McCreight, Frances Skinner (Krembil Research Institute, University of Health Network and University of Toronto, Toronto, ON, Canada) "Using NSG to perform millions of simulations in order to characterize in vivo-like states for interneurons of the hippocampus"
- Richard C. Gerkin, Russell J Jarvis, Sharon M. Crook (Arizona State University, Tempe, AZ, USA) "NeuronUnit: Tools for data-driven validation of neuron and neural circuit models"
- Vijay Iyer (MathWorks Inc., Boston, MA, USA) "Neuroscience Modeling and Data Processing with Communityauthored MATLAB-based Tools"

W7 Dynamics of Rhythm Generation

UW Medicine SLU Brotman Auditorium, Tue July 17, 9:00 to 18:00

Gennady Cymbalyuk, Georgia State University

The ability of distinct circuits to generate patterns of rhythmic activity is widespread among vertebrate and invertebrate species. These patterns correspond to different functions like control of different rhythmic movements and pathological events like seizure episodes. The dynamics of the circuits producing such patterns are based on the basic principles conserved across phyla. This workshop will investigate roles of interactions of processes on different time and space scales in attaining the robustness and flexibility, characteristic for living circuits. For example, we will discuss the roles played by Na+/K+ pump and ion exchangers in generation of functional and dysfunctional rhythms. We would like to bring together experts applying experimental approaches and the methods developed in the neuroscience, neurophysics, neuro-informatics, neuroethology, and the bifurcation theory to determine the basic principles of the transient, intermittent, and steady dynamics of rhythm generation from different phyla.

- Anatoly Buchin (Allen Institute for Brain Science, Seattle, USA) "Epileptic seizures as pathological oscillations in neural network and neural mass models"
- Gennady Cymbalyuk (GSU, Atlanta, USA) "Roles of the Na/K pump current in generation of bursting patterns"
- Irene Elices (Universidad Autónoma de Madrid, Madrid, Spain) "Dynamical invariants: cycle-by-cycle rhythm negotiation"
- Yaroslav Molkov (GSU, Atlanta, USA) "TRP channels and intracellular calcium dynamics in the pre-B[']otzinger complex"
- · Astrid Prinz (Emory University, Atlanta, USA) "Mechanisms for stabilizing rhythm generation"
- Nino Ramirez (Seattle Children's Hospital, Seattle, USA) "Dynamic mechanisms underlying respiratory rhythm generation"
- Ilya Rybak (Drexel University, Philadelphia, USA) "Respiratory CPG: Insights from optogenetic and modeling studies"
- Yina Wei (Allen Institute for Brain Science, Seattle, USA) "Differentials roles of sleep spindles and sleep slow oscillations in memory consolidation"

W8 Insights Gained by Detailed Dendritic Modeling

Allen Institute 540 Lab, Wed July 18, 9:00 to 18:00

Dieter Jaeger, Emory University Volker Steuber, University of Hertfordshire

Most abstract neural network models operate with single compartment neurons, i.e. without dendrites. In contrast, just about all mammalian neurons receive a majority of their synaptic inputs on dendrites. It is becoming increasingly clear that this is not just to provide more surface area and sample inputs in specific spatial configurations, but that dendrites supply neurons with important non-linear functions. This workshop will highlight modelling studies that explore the properties of dendritic computations through compartmental modelling. The distinct dendritic computational properties of different cell types will be highlighted.

Call for Contributed Talks: Open call for contributed short talks to our dendrite workshop - interested potential attendees please e-mail the organisers with a title and short abstract.

- Dieter Jaeger (Emory University, Atlanta, USA) "Introduction and Globus Pallidus neuron modelling"
- Volker Steuber (University of Hertfordshire, Hatfield, Hertfordshire, UK) "Dendritic morphology and information processing in cerebellar neurons"
- Carmen Canavier(LSU Health Sciences Center, New Orleans, LA, USA) "Intrinsic mechanisms of frequency selectivity in proximal dendrites of CA1 Pyramidal neuron"
- Arnd Roth(University College London, UK) "Active dendrites enable strong but sparse inputs to determine orientation selectivity"
- Alexandra Tran-Van-Minh (Francis Crick Institute, London, UK) "Dendritic properties of cerebellar stellate cells: information processing with sublinear dendrites"
- Monika Jadi (Yale University, New Haven, USA) "Inhibitory control of non-linear dendritic computations"
- Christof Koch (Allen Institute, WA, USA), "The astonishing diversity of mouse and human cortical dendrites"
- Bill Lytton (SUNY Dowstate Medical Center, NY, USA) "Dendritic plateaus could underlie hierarchical embedded ensembles"
- Avrama Blackwell (George Mason University, VA, USA) "Inhibition enhances spine-specific Calcium encoding of synaptic input patterns"
- Frances Skinner (UHN and Univ. of Toronto, ON, Canada) "How the specifics of dendritic ion channels in inhibitory cells of the hippocampus could contribute to function"
- Subutai Ahmed (Numenta, Inc., Ca, USA) "The predictive neuron: how active dendrites enable spatiotemporal computation in neocortex"

W9 Integrative Theories of Cortical Function

Allen Institute Training Room, Wed July 18, 9:00 to 18:00

Hamish Meffin, The University of Melbourne Stefan Mihalas, Allen Institute for Brain Science Anthony Burkitt, The University of Melbourne

The cerebral cortex is a brain region remarkable in similarity of structure between different mammalian species and between different areas in a species. This has led to developments of theories that parts of the cortex perform a similar set of operations, a dictionary of canonical cortical computations. In recent years, several theories for what these operations are have been developed. In concert with the theories multiple models have been developed implementing these proposed computations. This workshop aims to look at what progress has been made in understanding these local computations, how the global cortex functions arise from them, what experimental evidence can be used to differentiate between model, and what are the general integrative principles. We plan to foster a dialogue between theoreticians, experimentalists and modelers.

For an up to date list of talks and schedule please see http://www.nvri.org.au/events.php/40/cns2018-workshop-integrative-theories-of-cortical-function

- Tania Pasternak (U Rochester, USA) "Defining a role for prefrontal cortex in memory-guided sensory comparisons"
- Subutai Ahmad (VP Research Numenta, USA) "Locations in the neocortex: A Theory of sensorimotor prediction using cortical grid cells"
- Anitha Pasupathy (U Washington, USA) "Encoding things and stuff: multiplexed form and texture signals in primate V4"
- Markus Diesmann (Research Centre Jülich, Germany) "Reusable publication of a cortical multi-area model at cellular resolution"
- Hamish Meffin (U Melbourne, Australia) "The structure of non-linear receptive fields in cat primary visual cortex"
- Chang Sun Kim (Chonnam National University, Korea) "Computational implementation of the free energy principle in the brain"
- Stefan Mihalas (Allen Institute for Brain Science, USA) "Cortical visual systems perform deep integration of context"
- · Christof Koch (Allen Institute for Brain Science, USA) "Cortex as the Physical Substrate of Consciousness"

W10 How Does Learning Reshape the Dimensionality of Collective Network Activity?

UW Medicine SLU Brotman Auditorium, Wed July 18, 9:00 to 18:00

Rainer Engelken, Columbia University Guillaume Lajoie, Université de Montréal Merav Stern, University of Washington

Large neural networks, biological or artificial, can learn complex input-output relations. During learning the network dynamics are often constrained to a low-dimensional manifold despite available high-dimensional space. The mechanism behind this space dimensionality confinement is yet unclear.

Current technological advances in chronic population recordings and optogenetics provide the tools to measure and manipulate the reorganization of this state-space structure in neural circuits in awake, behaving animals during learning.

We will bring together theoreticians and experimentalists to address a most fundamental question in neuroscience, that is, how learning reshapes collective network activity.

More specifically, we would like to explore:

How does the neural dimensionality of a learned task relate to the task complexity?

Which mathematical tools are suitable to identify low-dimensional neural manifolds and track their emergence during learning?

How does the dimensionality constrain the learning capabilities?

- SueYeon Chung (Harvard University) "Classification and geometry of neural manifolds, and the application to deep networks"
- Rainer Engelken (Columbia University) "Dimensionality and entropy rate of spontaneous and evoked neural rate dynamics"
- Kameron Decker Harris (University of Washington) "Connections between dimensionality and network sparsity"
- Zack Kilpatrick (University of Colorado Boulder) "Learning continuous attractors in recurrent neural networks"
- Guillaume Lajoie (Université de Montréal) "External perturbations modulate coding manifolds and dimensionality of motor cortex activity"
- Luca Mazzucato (Columbia University, University of Oregon) "Changes in effective network coupling mediate learning in a trace fear conditioning task"
- Stefano Recanatesi (University of Washington) "Explaining the dimensionality of the activity in RNNs through connectivity motifs"
- Merav Stern (University of Washington) "Increased correlations and decreased activity dimensions during task performance"
- Evelyn Tang (University of Pennsylvania) "Effective learning is accompanied by high dimensional and efficient representations of neural activity"
- · Alex Williams (Stanford University) "Dimensionality reduction with single trial resolution"

W11 Towards New Models for Cognitive Flexibility

Allen Institute 288/289, Wed July 18, 9:00 to 18:00

Rajeev Rikhye, Massachusetts Institute of Technology

Cognitive flexibility is defined as the ability to make different inferences from the same stimulus depending on behavioral demands. This essential computation allows us to act intelligently in our dynamically changing environments. The prefrontal cortex (PFC) has traditionally been the focus of many computational theories of cognitive flexibility. However, several recent have identified many subcortical areas, such as the mediodorsal thalamus, as key players in controlling how the cortex flexibly switches between task sets. These new results suggest that the computations responsible for cognitive flexibility are more distributed and dynamic than previously thought.

In this workshop, we bring together theorists and researchers interested in flexibility at several levels. Our goal is to develop a unified view of the fundamental neural motifs – both cortical and subcortical – that underlie cognitive flexibility. We anticipate that this workshop will be of interest to anyone interested in cognitive flexibility and neural computation.

- Michele Basso (UCLA, US) "The role of the Basal Ganglia and Superior Colliculus in Decision Making"
- Timothy Hanks (UC Davis, US) "Flexibility of timescales of evidence weighting for decisions and confidence"
- Athena Akrami (Princeton University, US) "Role of posterior parietal cortex in mixing past with present information"
- Camilo Libedinsky (NUS, Singapore) "Heterogeneity in the prevalence of mixed-selectivity among different sub-regions of the lateral prefrontal cortex"
- Seth Egger (MIT, US) "Internal Models of sensorimotor integration regulate cortical dynamics"
- Nicolas Masse (University of Chicago, US) "TBA"
- Rajeev Rikhye (MIT, US), "Fronto-thalamic substrates of cognitive flexbility"

Posters

Poster Listing

Saturday Posters Posters P1 – P145

P1 MRI2MRI: A fully convolutional deep artificial network algorithm that accurately transforms between brain MRI contrasts

Ariel Rokem¹*, Sa Xiao², Yue Wu², and Aaron Lee²

¹University of Washington, eScience Institute, Seattle, WA, United States ²University of Washington, Department of Ophthalmology, Seattle, WA, United States

P2 Closing the loop between neural network simulators and the OpenAl Gym

Philipp Weidel¹*, Jakob Jordan², and Abigail Morrison¹

¹Juelich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany ²University of Bern, Department of Physiology, Bern, Switzerland

P3 Reproducing polychronization: a guide to maximizing the reproducibility of spiking network models

Robin Pauli¹, Philipp Weidel^{1*}, Susanne Kunkel², and Abigail Morrison¹

¹Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany ²Norwegian University of Life Sciences, Faculty of Science and Technology, Ås, Norway

P4 Localization of coherent activity based on multi-electrode local field potentials

Robin Pauli*, Tom Tetzlaff, and Abigail Morrison

Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P5 Exploring the role of striatal D1-MSNs and D2-MSNs in action selection using a robotic framework

Jyotika Bahuguna*, Philipp Weidel, and Abigail Morrison

Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P6 Calcium imaging spike deconvolution with minimal parameter tuning and limiting assumptions

Nathan Lee^{1*}, Kameron Decker Harris², and Aleksandr Aravkin¹

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²University of Washington, Department of Computer Science, Seattle, WA, United States

P7 Applying exact robust PCA to analyze mouse brain activity data

Roman Levin*, Merav Stern, Eric Shea-Brown, and Aleksandr Aravkin

University of Washington, Department of Applied Mathematics, Seattle, WA, United States

P8 A theory of dendritic buckets

Hermann Cuntz¹*, Alexander Bird²

¹Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt am Main, Germany ²Frankfurt Institute for Advanced Studies (FIAS), Computational Neuroanatomy, Frankfurt am Main, Germany

P9 Predictive information as an organization principle for both sensory and cortical circuitry

Siwei Wang^{1*}, Idan Segev¹, Stephanie Palmer², Oren Amsalem¹, and Alexander Borst³

¹Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel ²University of Chicago, Department of Organismal Biology and Anatomy & Department of Physics, Chicago, IL, United States

³Max Plack Institute, Department of Neurobiology, Munich, Germany

P10 Distinct roles of anterior cingulate cortex and basolateral amygdala in reinforcement learning under perceptual uncertainty.

Alexandra Stolyarova^{1*}, Megan Peters², Hakwan Lau¹, and Alicia Izquierdo¹

¹University of California, Los Angeles, Department of Psychology, Los Angeles, CA, United States ²University of California, Riverside, Bioengineering, Riverside, CA, United States

P11 Efficient search with Lévy flights emerges from stochastic optimization

Lukasz Kusmierz*, Taro Toyoizumi, and Alireza Gourdarzi

RIKEN Brain Science Institute, Neural Computation and Adaptation, Wako, Japan

A multi-scale data-based network model of lateral inhibition in mouse olfactory bulb P12

Daniel Zavitz¹*, Isaac Youngstrom², Matt Wachowiak², and Alla Borisyuk¹

¹University of Utah, Department of Mathematics, Salt Lake City, UT, United States 2 University of Utah, Department of Neurobiology & Anatomy, Salt Lake City, UT, United States

P13 Assessing phase-locking and entrainment in oscillatory networks using one-dimensional maps

Casey Diekman, Amitabha Bose*

New Jersey Institute of Technology, Department of Mathematical Sciences, Newark, NJ, United States

P14 Functional role of 5-HT1A receptors in serotonergic modulation of active exhalation

William Barnett^{1*}, Yaroslav Molkov¹, Lucas Koolen², Adrian Newman-Tancredi³, Mark Varney³, and Ana Abdala²

¹Georgia State University, Department of Mathematics & Statistics, Atlanta, GA, United States ²University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Faculty, Bristol, United Kingdom

³Neurolixis Inc, Dana Point, CA, United States

P15 Analyzing how Na+/K+ pump influences the robust bursting activity of half-center oscillator (HCO) models

Ronald Calabrese, Anca Doloc-Mihu*

Emory University, Department of Biology, Atlanta, GA, United States

P16 Experimental directory structure (Exdir): An alternative to HDF5 without introducing a new file format

Svenn-Arne Dragly¹, Milad Hobbi Mobarhan², Mikkel Lepperød², Simen Tennøe³, Gaute Einevoll^{4*}, Marianne Fyhn², Torkel Hafting⁵, and Anders Malthe-Sørensen

¹University of Oslo, Department of Physics, Oslo, Norway
 ²University of Oslo, Department of Biosciences, Oslo, Norway
 ³University of Oslo, Department of Informatics, Oslo, Norway
 ⁴Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway
 ⁵University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway

P17 A mathematical framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons

Gaute Einevoll¹, Geir Halnes^{1*}, Andreas Solbrå², Aslak Wigdahl Bergersen³, Jonas van den Brink³, and Anders Malthe-Sørensen²

¹Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway ²University of Oslo, Department of Physics, Oslo, Norway ³Simula Research Laboratory, Fornebu, Norway

P19 Modeling the perceived perils of sodium channel anticonvulsants in Dravet Syndrome

Andrew Knox*

University of Wisconsin, Department of Neurology, Madison, WI, United States

P20 Spatial modeling of AMPA receptor trafficking and sorting at the Endosome

Erik De Schutter*, Sarah Nagasawa, Iain Hepburn, and Andrew R. Gallimore Okinawa Institute of Science and Technology, Computational Neuroscience Unit, Onna-Son, Japan

P21 Neural representation of perceptual texture dimensions in macaque area V4

Taekjun Kim^{*}, Wyeth Bair, and Anitha Pasupathy University of Washington, Department of Biological Structure, Seattle, WA, United States

- P22 Object encoding in macaque inferior temporal cortex under partial occlusion Tomoyuki Namima*, Anitha Pasupathy University of Washington, Department of Biological Structure, Seattle, WA, United States
- P23 The impact of propagation delay in a Linsker-type network Catherine Davey^{*}, David Grayden, and Anthony Burkitt University of Melbourne, Department of Biomedical Engineering, Melbourne, Australia
- P24 A biologically plausible neural model of visual pathways based on efficient coding Yanbo Lian^{1*}, Hamish Meffin², David Grayden¹, Tatiana Kameneva³, and Anthony Burkitt¹ ¹University of Melbourne, Department of Biomedical Engineering, Melbourne, Australia ²National Vision Research Institute, Carlton, Australia ³University of Melbourne, Electrical and Electronic Engineering, Parkville, Vic, Australia

P25 Building and simulating a biophysically detailed network model of the mouse primary visual cortex

Yazan Billeh*, Sergey Gratiy, Kael Dai, Ramakrishnan Iyer, Nathan Gouwens, Stefan Mihalas, Christof Koch, and Anton Arkhipov

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P26 Nonlinear dynamics tools unfold brain activity in optogenetic experiments

Jessica Helms¹, Xandre Clementsmith¹, Sorinel Oprisan^{1*}, Tams Tompa², and Antonieta Lavin³

¹College of Charleston, Department of Physics and Astronomy, Charleston, SC, United States ²University of Miskolc, Miskolc, Hungary ³Medical University of South Carolina, Charleston, SC, United States

P27 On the subthreshold resonance properties of neurons

Rodrigo F. O. Pena*, Vinícius Cordeiro, Cesar C. Ceballos, and Antônio C. Roque

University of São Paulo, Department of Physics, Ribeirão Preto, Brazil

P28 Implementation of the Potjans-Diesmann cortical microcircuit model in NetPyNE/NEURON with rescaling option

Cecilia Romaro¹*, Fernando Najman², Salvador Dura-Bernal³, and Antônio C. Roque¹

¹University of São Paulo, Department of Physics, Ribeirão Preto, Brazil ²University of São Paulo, Math and Statistics Department, São Paulo, Brazil ³SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States

P29 Effects of spike frequency adaptation on dynamics of a multi-layered cortical network with heterogeneous neuron types

Renan O. Shimoura*, Nilton Liuji Kamiji, Rodrigo F. O. Pena, Vinícius Cordeiro, and Antônio C. Roque University of São Paulo, Department of Physics, Ribeirão Preto, Brazil

P30 Information processing from external inputs to the entorhinal cortex grid cells

Anu Aggarwal*

Central Michigan University, Engineering and Technology, Mt Pleasant, MI, United States

P31 Understanding action potential evolution in axon due to focal geometric deformation using a hybrid 1D-3D model

Yuan-Ting Wu*, Ashfaq Adnan

University of Texas Arlington, Mechanical and Aerospace Engineering, Arlington, TX, United States

P32 A quantitative model for estimating the scale of photochemically induced ischemic stroke

Zhaojie Yao*, Azadeh Yazdan-Shahmorad

University of Washington, Departments of Bioengineering & Electrical Engineering, Seattle, WA, United States

P33 Visualization of pre-motor and parietal network activity patterns during free behavior in rats

Medorian Gheorghiu¹*, Jonathan Withlock², Raul Muresan³, and Bartul Mimica²

¹ Transylvanian Institute of Neuroscience, Cluj, Romania

²Norwegian University of Science and Technology (NTNU), Kavli Institute for Systems Neuroscience, Trondheim, Norway

³Romanian Institute of Science and Technology, Center for Cognitive and Neural Studies, Cluj-Napoca, Romania

P34 Mean field theory of large and sparse recurrent networks of spiking neurons including temporal correlations of spike-trains

Sebastian Vellmer^{1*}, Benjamin Lindner²

¹Bernstein Center for Computational Neuroscience, Complex Systems and Neurophysics, Berlin, Germany ²Humboldt University Berlin, Physics Department, Berlin, Germany

P35 Probabilistic analysis of high-dimensional stochastic firing rate models: Bridging neural network models and firing rate models

Ehsan Mirzakhalili*, Bogdan Epureanu

University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI, United States

P36 Input oscillations may stabilize working memory activity

Nikita Novikov¹*, Boris Gutkin²

¹St.Petersburg School of Economics, Higher School of Economics, Moscow, Russian Federation ²École Normale Supérieure, Paris, France

P37 Artificial evolution of networks of artificial adaptive exponential neurons for multiplicative operations

Muhammad Khan, Borys Wrobel*

Adam Mickiewicz University in Poznan, Evolving Systems Laboratory, Poznan, Poland

P38 Artificial evolution of very small spiking neural network robust to noise and damage for recognizing temporal patterns

Muhammad Yaqoob, Borys Wrobel*

Adam Mickiewicz University in Poznan, Evolving Systems Laboratory, Poznan, Poland

P39 Population and single-neuron measures of multisensory integration

Brian Fischer*

Seattle University, Department of Mathematics, Seattle, WA, United States

P40 Optimizing deep convolutional network architectures to match visual cortex

Bryan Tripp*

University of Waterloo, Systems Design Engineering, Waterloo, Canada

P41 SIMNETS: a novel mathematical framework to detect functional neuronal sub-ensembles

Jacqueline Hynes¹*, David Brandman², John Donoghue¹, and Carlos Vargas-Irwin¹

¹Brown University, Department of Neuroscience, Providence, RI, United States ²Brown University, Department of Engineering, Providence, RI, United States

P42 Finite size effect for spiking neural network with spatially dependent coupling

Siwei Qiu*, Carson Chow

National Institute of Health, NIDDK, Lab of Biological Modeling, Bethesda, MD, United States

P43 A space-time continuum in the hippocampus?

Tristan Aft¹*, Sorinel Oprisan¹, Mona Buhusi², and Catalin Buhusi²

¹College of Charleston, Department of Physics and Astronomy, Charleston, SC, United States ²Utah State University, Department of Psychology, Logan, UT, United States

P44 Bayesian filtering of uncertain sensory data in the brain: Hamilton's principle approach

Chang Sub Kim*

Chonnam National University, Department of Physics, Gwangju, Republic of Korea

P45 Simultaneous recording of micro-electrocorticography and local field potentials for decoding rat forelimb movement

Jinyoung Oh^{1*}, Soshi Samejima¹, Abed Khorasani¹, Adrien Boissenin¹, Sam Kassegne², and Chet Moritz¹

¹University of Washington, Rehabilitation Medicine, Seattle, WA, United States ²San Diego State University, Mechanical Engineering, San Diego, CA, United States

P46 Predicting the effects of deep brain stimulation using a coupled oscillator model

Gihan Weerasinghe^{1*}, Benoit Duchet¹, Rafal Bogacz¹, and Christian Bick²

¹ University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom ² University of Oxford, Mathematical Institute, Oxford, United Kingdom

P47 Retinal motion-detection under noisy conditions

Frances Chance*, Christina Warrender

Sandia National Laboratories, Department of Neural and Data-Driven Computing, Albuquerque, NM, United States

P48 Using information theory and a Bayesian model to examine the factors that influence the decision to consume alcohol in a rodent model of alcoholism

Nicholas Timme*, David Linsenbardt, and Christopher Lapish

Indiana University-Purdue University, Department of Psychology, Indianapolis, IN, United States

P49 Stochastic facilitation of encoding process of a dynamical pattern in mouse retina

Arthur Hung¹*, Chi Keung Chan², and Chuan-Chin Chiao³

¹National Tsing Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
²Academia Sinica, Department of Physics, Taipei, Taiwan, Province of China
³National Tsing Hua University, Department of Life Sciences, Hsinchu, Taiwan, Province of China

P50 Diverse dynamics in small recurrent networks: A case study of coupled recurrent and coupled inhibitory neurons

Pei Hsien Liu¹*, Cheng-Te Wang², Alexander White³, Tung-Chun Chang⁴, and Chung-Chuan Lo³

¹National Tsing Hua University, Interdisciplinary Program of Engineering, Hsinchu City, Taiwan, Province of China ²National Tsing Hua University, Institute of Bioinformatics and Structural Biology, Hsinchu, Taiwan, Province of China

³National Tsing Hua University, Institute of Systems Neuroscience, Hsinchu, Taiwan, Province of China ⁴Academia Sinica, Institute of Information Science, Taipei, Taiwan, Province of China

P51 Morpho-electric properties and computational simulation of human dentate gyrus granule cells from the epileptogenic hippocampus

Anatoly Buchin¹*, Rebecca De Frates¹, Peter Chong¹, Rusty Mann¹, Jim Berg¹, Ueli Rutishauser², Ryder Gwinn³, Staci Sorensen¹, Jonathan Ting¹, and Costas A. Anastassiou¹

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²Cedars-Sinai Medical Center, California Institute of Technology, Los Angeles, CA, United States ³Swedish Medical Center, Seattle, WA, United States

P52 Development of realistic single-neuron models of mouse V1 capturing in vitro and in vivo properties

Yina Wei*, Anirban Nandi, and Costas A. Anastassiou

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P53 A multi-modal discovery platform toward studying mechanisms-of-action of electric brain stimulation

Fahimeh Baftizadeh^{1*}, Soo Yeun Lee¹, Sergey Gratiy¹, Taylor Cunnington², Shawn Olsen¹, and Costas A. Anastassiou¹

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²University of Washington, Seattle, WA, United States

P54 Kernel current source density revisited

Chaitanya Chintaluri¹, Marta Kowalska², Michal Czerwiński², Wladyslaw Średniawa², Joanna Jędrzejewska-Szmek², and Daniel Wójcik²*

¹University of Oxford, Centre for Neural Circuits and Behaviour, Oxford, United Kingdom ²Nencki Institute of Experimental Biology of PAS, Laboratory of Neuroinformatics, Warsaw, Poland

P55 Modelling the electrical impedance of neural tissue based on its cellular building blocks

Anthony Burkitt¹, David Grayden¹, Hamish Meffin^{2*}, Omid Monfared¹, Bahman Tahayori¹, Dean Freestone³, and Dragan Nesic⁴

¹University of Melbourne, Department of Biomedical Engineering, Parkville, Australia

²National Vision Research Institute, Carlton, Australia

³University of Melbourne, Department of Medicine, Parkville, Australia

⁴University of Melbourne, Department of Electrical & Electronic Engineering, Parkville, Australia

P56 Local and global neuronal network structure influence synchronous events

Brittany Baker*, Duane Nykamp

University of Minnesota, School of Mathematics, Minneapolis, MN, United States

P57 Interplay of synaptic noise and chaos determines limits of cortical reliability

Max Nolte*, Michael Reimann, James King, Henry Markram, and Eilif Muller

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P58 Shedding light on the cellular origins of voltage-sensitive dye imaging: an in silico study

Taylor Newton*, Juan Hernando, Jafet Villafranca D'az, Stefan Eilemann, Grigori Chevtchenko, Henry Markram, and Eilif Muller

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P59 Reconstruction and simulation of a full-scale model of rat hippocampus CA1

Michele Migliore^{1*}, Lida Kanari², James King², Szabolcs Kali³, Henry Markram², Armando Romani², Nicolas Antille², Luca Leonardo Bologna⁵, Julian Martin Leslie Budd⁵, Jean-Denis Courcol², Adrien Devresse², Andras Ecker², Joanne Falck⁶, Cyrille Ph Favreau², Michael Gevaert², Attila Gulyas⁵, Olivier Hagens², Juan Hernando², and Silvia Jimenez²

¹ Institute of Biophysics, National Research Council, Palermo, Italy
 ² École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland
 ³ Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
 ⁴ University College London & Deutsches Zentrum für Neurodegenerative Erkrankungen, Germany
 ⁵ University College London, United Kingdom

P60 The SONATA data format: A new file format for efficient description of large-scale neural network models

Kael Dai¹*, Yazan Billeh¹, Jean-Denis Courcol², Sergey Gratiy¹, Juan Hernando², Adrien Devresse², Michael Gevaert², James King², Werner Alfons Hilda van Geit², Daniel Nachbauer², Arseny Povolot-skiy², Anton Arkhipov¹, and Eilif Muller²

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P61 Stability of synaptic weights in a biophysical model of plasticity in the neocortical microcircuit without explicit homeostatic mechanisms

Michael Reimann*, Giuseppe Chindemi, Henry Markram, and Eilif Muller

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P62 Biophysical modeling of synaptic plasticity in the somatosensory cortex

Giuseppe Chindemi^{1*}, James King¹, Srikanth Ramaswamy¹, Michael Reimann¹, Christian A Rössert¹, Werner Alfons Hilda van Geit¹, Henry Markram¹, Vincent Delattre¹, Adrien Devresse¹, Michael Doron², Jeremy Fouriaux¹, Michael Graupner³, Pramod Kumbhar¹, Max Nolte¹, Rodrigo Perin³, Fabien Delalondre¹, Idan Segev², and Eilif Muller¹

¹ École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

²Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel

³Université Paris Descartes, Laboratoire de Physiologie Cérébrale - UMR 8118, CNRS, Paris, France ⁴École Polytechnique Fédérale de Lausanne, Laboratory of Neural Microcircuitry, Lausanne, Switzerland

P63 Dynamic Worm: Moving model of Caenorhabditis elegans worm controlled by the nervous system

Jimin Kim*, Eli Shlizerman

University of Washington, Electrical Engineering & Applied Mathematics, Seattle, WA, United States

P64 Modeling network connectivity for dopamine-mediated olfactory learning in mosquitos.

Suh Woo Jung^{1*}, Jeffrey Riffell², and Eli Shlizerman¹

¹University of Washington, Department of Electrical Engineering, Seattle, WA, United States ²University of Washington, Department of Biology, Seattle, WA, United States

P65 Detection of spatio-temporal spike patterns in motor cortex during a reach-to-grasp task

Pietro Quaglio¹*, Sonja Gruen¹, Alper Yegenoglu², and Emiliano Torre³

¹ Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Jülich, Germany ² Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6) & Institute for Advanced Simulation (IAS-6), Jülich, Germany

³ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, Zürich, Switzerland

P66 Random contrastive Hebbian Learning as a biologically plausible learning scheme

Georgios Detorakis1*, Travis Bartley², and Emre Neftci¹

¹University of California, Irvine, Department of Cognitive Sciences, Irvine, CA, United States ²University of California, Irvine, Department of Electrical Engineering & Computer Science, Irvine, CA, United States

P67 Activity of neural circuit in V1 during locomotion demystified

Doris Voina¹*, Stefan Mihalas², Stefano Recanatesi³, and Eric Shea-Brown¹

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ³University of Washington, Department of Physiology and Biophysics, Seattle, WA, United States

P68 Dimensionality of recurrent neural networks trained to classify spatially clustered inputs

Matthew Farrell^{1*}, Stefano Recanatesi², and Eric Shea-Brown¹

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²University of Washington, Department of Physiology and Biophysics, Seattle, WA, United States

P69 How connectivity motifs shape the dimensionality of network response

Stefano Recanatesi^{1*}, Gabriel Ocker², and Eric Shea-Brown³

¹University of Washington, Center for Computational Neuroscience, Seattle, WA, United States ²Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ³University of Washington, Department of Applied Mathematics, Seattle, WA, United States

P70 Action potential propagation in axons: Effect on sodium conductance of collateral and subbranch distance from soma

Ngwe Sin Phyo, Erin Munro Krull*

Beloit College, Department of Mathematics and Computer Science, Beloit, WI, United States

P71 Action potential propagation in axons: How sodium conductance can estimate propagation as collateral and sub-branch length vary

Yizhe Tang, Erin Munro Krull*

Beloit College, Department of Mathematics and Computer Science, Beloit, WI, United States

P72 Dentate gyrus network model

Facundo Rodriguez*

Instituto Balseiro, Department of Statistics & Physics, Bariloche, Argentina

P73 The ratio of specialist and generalist neurons in the feature extraction phase determines the odor processing capabilities of the locust olfactory system

Aaron Montero*, Jessica Lopez-Hazas, and Francisco B Rodriguez

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

P74 Regulation of neural threshold in Kenyon cells through their sparse condition improves pattern recognition performance

Jessica Lopez-Hazas, Aaron Montero*, and Francisco B Rodriguez

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

P76 Local excitatory/inhibitory imbalances shape global patterns of activity: A model for desynchronized activity under anesthesia in Alzheimer's disease

Merav Stern^{1*}, Gabriel Ocker²

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P77 Neural automata

Martin Schumann¹*, Gabriele Scheler²

¹ Technical University of Munchen, Computer Science, Munich, Germany ²Carl Correns Foundation for Mathematical Biology, Mountain View, United States

P78 Predictable variability in sensory-evoked responses in the awake brain: optimal readouts and implications for behavior

Audrey Sederberg¹*, Aurélie Pala¹, He Zheng¹, Biyu He², and Garrett Stanley¹

¹Georgia Institute of Technology, Coulter Dept. of Biomedical Engineering, Atlanta, GA, United States ²Langone Medical Center, New York University, Departments of Neurology, Neuroscience and Physiology, and Radiology, New York, NY, United States

P79 Selectivity and sensitivity of cortical neurons to electric stimulation using ECoG electrode arrays

Pierre Berthet¹*, Espen Hagen¹, Torbjørn V Ness², and Gaute Einevoll²

¹University of Oslo, Department of Physics, Oslo, Norway ²Norwegian University of Life Sciences, Faculty of Science and Technology, Ås, Norway

P80 Patterns of gastrointestinal motility and the effects of temperature and menthol: A modelling approach

Parker Ellingson^{1*}, Taylor Kahl¹, Sarah Johnson¹, Natalia Maksymchuk¹, Sergiy Korogod², Chun Jiang³, and Gennady Cymbalyuk¹

¹Georgia State University, Neuroscience Institute, Atlanta, GA, United States ²Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine ³Georgia State University, Department of Biology, Atlanta, GA, United States

P81 Mechanisms underlying locomotion and paw-shaking rhythms in cat multifunctional central pattern generator

Jessica Green^{1*}, Boris Prilutsky², and Gennady Cymbalyuk¹

¹Georgia State University, Neuroscience Institute, Douglasville, GA, United States ²Georgia Institute of Technology, Department of Biology, Atlanta, GA, United States

P82 The role of Na+/K+ pump in intrinsic intermittent bursting dynamics in model neuron of the Pre-Bötzinger Complex

Alex Vargas, Gennady Cymbalyuk*

Georgia State University, Neuroscience Institute, Atlanta, GA, United States

P83 Changes in relaxation time predict stimulus-induced reduction of variability at the single-cell level

Luca Mazzucato¹*, Ahmad Jezzini², Alfredo Fontanini³, Giancarlo La Camera³, and Gianluigi Mongillo⁴

¹Columbia University, Center for Theoretical Neuroscience, New York, NY, United States
 ²Washington University, Department of Neuroscience, St. Louis, WA, United States
 ³Stony Brook University, Department of Neurobiology and Behavior, Stony Brook, NY, United States
 ⁴Université Paris Descartes, Centre de Neurophysique, Physiologie et Pathologie, paris, France

P84 Intracellular fluxes contributing to [Ca2+]i responses in rat magnocellular neurons

Martin Zapotocky^{1*}, Stepan Kortus¹, and Govindan Dayanithi²

¹Czech Academy of Sciences, Institute of Physiology, Prague, Czechia ²Czech Academy of Sciences, Institute of Experimental Medicine, Prague, Czechia

P85 Spatiochromatic integration by double opponent neurons in macaque V1

Abhishek De*, Gregory D. Horwitz

University of Washington, Department of Physiology and Biophysics, Seattle, WA, United States

P86 A dynamic causal modeling of voltage sensitive dye imaging (VSDI-DCM) in the rodent hippocampus

Jiyoung Kang, Kyesam Jung, and Hae-Jeong Park*

Yonsei University, College of Medicine, Seoul, Republic of Korea

P87 Estimation of effective connectivity in the microcircuits of the mouse barrel cortex using dynamic causal modeling of calcium imaging

Kyesam Jung, Jiyoung Kang, and Hae-Jeong Park*

Yonsei University, College of Medicine, Seoul, Republic of Korea

P88 Predictions of neuronal connectivity from axonal and dendritic arbors

Alexander Bird¹*, Lisa Deters¹, and Hermann Cuntz²

¹ Frankfurt Institute for Advanced Studies (FIAS), Computational Neuroanatomy, Frankfurt am Main, Germany ² Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt/Main, Germany

P89 Optimal wiring imposes fixed cortical hypercolumn sizes

Marvin Weigand¹*, Hermann Cuntz²

¹ Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany ² Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt/Main, Germany

P90 Dendritic branching statistics explained from minimal wiring constraints

Felix Effenberger, Hermann Cuntz*

Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt/Main, Germany

P91 Dissecting the structure and function relationship in Drosophila dendrite development with the help of computational modelling

André Castro^{1,2*}, Lothar Baltruschat³, Tomke Stuerner³, Gaia Tavosanis³, and Hermann Cuntz⁴

¹Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Portugal

²Frankfurt Institute for Advanced Studies (FIAS)

³German Center for Neurodegenerative Diseases (DZNE), Dendrite Differentiation Unit, Bonn, Germany ⁴Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy, Frankfurt/Main, Germany

P92 Dimensionality reduction of brain signals of rats by Spectral Principal Component Analysis (SPCA)

Altyn Zhelambayeva^{1*}, Hernando Ombao²

¹Nazarbayev University, Department of Computer Science & Biological Sciences, Astana, Kazakhstan ²King Abdullah University of Science and Technology, Statistics Program, Thuwal, Saudi Arabia

P94 Advancing computational studies of the nervous system: Publishing models not paper descriptions of models

James Bower^{1*}, David Beeman², and Hugo Cornelis³

¹Southern Oregon University, Department of Biology, Ashland, OR, United States ²University of Colorado, Department of Electrical, Computer and Energy Engineering, boulder, CO, United States ³Neurospaces Development GCV, Martelarenlaan, Belgium

P95 Disentangling diverse patterns of synaptic efficacy in vivo and their causes

Abed Ghanbari^{1*}, Naixin Ren², Christian Keine³, Carl Stoelzel², Bernhard Englitz⁴, Harvey Swadlow², and Ian H. Stevenson²

¹University of Connecticut, Department of Biomedical Engineering, Storrs, CT, United States ²University of Connecticut, Department of Psychological Sciences, Storrs, CT, United States ³Carver College of Medicine & University of Iowa, Department of Anatomy and Cell Biology, IA, United States ⁴Radboud University & Donders Institute for Brain, Cognition and Behaviour & Department of Neurophysiology, Netherlands

P96 Optimizing stimulation protocols for prosthetic vision based on retinal anatomy

Michael Beyeler^{1*}, Ariel Rokem¹, Devyani Nanduri², James D. Weiland³, Geoffrey M. Boynton⁴, and Ione Fine⁴

¹University of Washington, eScience Institute, Seattle, WA, United States ²University of Southern California, Biomedical Engineering, Los Angeles, CA, CA, United States ³University of Michigan, Biomedical Engineering, Ann Arbor, MI, MI, United States ⁴University of Washington, Psychology, Seattle, WA, WA, United States

P97 Effect of use dependent plasticity on information transfer at hippocampal synapses

Emily Stone^{1*}, Elham Bayat-Mokhtari¹, and J. Josh Lawrence²

¹University of Montana, Department of Mathematical Sciences, Missoula, MT, United States ²Texas Tech University Health Sciences Center, Department of Pharmacology and Neuroscience, Lubbock, TX, United States

P98 A neural network model of complementary learning systems

Mika Jain*, Jack Lindsey

Stanford University, Departments of Physics, Computer Sciences & Biology, NYC, NY, United States

P99 Separation of hemodynamic signals from GCaMP fluorescence measured with widefield imaging

Matt Valley¹*, Michael Moore², Jun Zhuang¹, Natalia Mesa¹, Mark Reimers², and Jack Waters¹

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²Michigan State University, Department of Neuroscience, East Lansing, MI, United States

P100 Brains on board: Neuromorphic control of flying robots

Thomas Nowotny¹*, Eleni Vasilaki², Andrew O. Philippides¹, Paul R. Graham³, Lars Chittka⁴, Mikko Juusola⁵, and James A. R. Marshall²

¹University of Sussex, School of Engineering and Informatics, Brighton, United Kingdom

²University of Sheffield, Department of Computer Sciences, Sheffield, United Kingdom

³University of Sussex, School of Life Sciences, Brighton, United Kingdom

⁴Queen Mary, University of London, School of Biological & Chemical Sciences, London, United Kingdom

⁵University of Sheffield, Department of Biomedical Science, Sheffield, United Kingdom

P101 Gamma genesis and phase-amplitude coupling in a model of striatal fast-spiking interneurons

Sebastien Naze*, James Humble, and James Kozloski

IBM TJ Watson Research Center, Multiscale Brain Modeling and Neural Tissue Simulation, Yorktown Heights, NY, United States

P102 Brain activity in a spherical geometry via neural field theory

Kamrun Mukta*, Xiao Gao, Peter Robinson, and James MacLaurin

The University of Sydney, School of Physics, NSW, Sydney, Australia

P103 Model of plasticity in re-learning auditory and visual localization cues

Petr Marsalek¹*, Jan Vokral²

¹Charles University of Prague, Institute of Pathological Physiology, Praha, Czechia ²Charles University of Prague, Department of Phoniatrics, Praha, Czechia

P104 Optimal readout of neural activity near criticality

Matias Calderini*, Eric Kuebler, Philippe Lambert, and Jean-Philippe Thivierge University of Ottawa, Department of Psychology, Ottawa, Canada

P105 Robust dendritic computations with sparse distributed representations

Subutai Ahmad^{1*}, Max Schwarzer², and Jeff Hawkins¹

¹Numenta, Redwood City, CA, United States ²Pomona College, Department of Computer Science, Claremont, CA, United States

P106 Sparse coding and dimensionality reduction in the brain

Michael Beyeler^{1*}, Emily L. Rounds², Kristofor D. Carlson², Nikil Dutt², and Jeffrey L. Krichmar²

¹University of Washington, eScience Institute, Seattle, WA, United States ²University of California, Irvine, Cognitive Sciences, Irvine, CA, CA, United States

P107 Network interactions can mask intrinsic dynamics in rhythmic circuits

Jonathan Rubin¹*, Jessica Ausborn², Abigail Snyder³, Ilya Rybak², and Jeffrey Smith⁴

¹University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States ²Drexel University, Neurobiology & Anatomy, PA, United States ³Pacific Northwest National Laboratory, WA, United States ⁴National Institute of Health, MD, United States

P108 Modeling predicts altered ion channel mechanisms and firing properties in striatal neurons of the Q175 mouse model of Huntington's disease

Hanbing Song^{1*}, Christina Weaver¹, Joseph Goodliffe², and Jennifer Luebke²

¹ Franklin and Marshall College, Department of Mathematics and Computer Science, Lancaster, PA, United States ²Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, MA, United States

P109 Influence of cortical network topology and delay structure on EEG rhythms in a whole-brain connectome-based thalamocortical neural mass model

John Griffiths¹*, Jeremie Lefebvre²

¹Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada ²Krembil Research Institute, University Health Network, Toronto, Canada

P110 Characterizing neural selectivity in multidimensional sensory feature space

Chang-Eop Kim*, Jihong Oh

Gachon Uniersity, Department of Physiology, Seoul, Republic of Korea

P111 Twin fingerprinting: Optimal mapping of heritable traits in the human connectome

Uttara Tipnis¹*, Enrico Amico¹, Linhui Xie², Jingwen Yan³, Michael Wang¹, Mario Dzemidzic⁴, David Kareken⁴, Li Shen⁵, and Joaquin Goni¹

¹ Indiana University-Purdue University, School of Industrial Engineering, West Lafayette, IN, United States
 ² Indiana University-Purdue University, Electrical and Computer Engineering, Indianapolis, IN, United States
 ³ Indiana University-Purdue University, School of Informatics and Computing, Indianapolis, IN, United States
 ⁴ Indiana University School of Medicine, Department of Neurology, Indianapolis, IN, United States
 ⁵ University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States

P112 Spike-timing-dependent plasticity effect on the patterns of neural synchrony

Leonid Rubchinsky¹*, Joel Zirkle²

¹ Indiana University Purdue University Indianapolis & Indiana University School of Medicine, Department of Mathematical Sciences & Stark Neurosciences Research Institute, Indianapolis, IN, United States ² Indiana University Purdue University Indianapolis, Department of Mathematical Sciences, Indianapolis, IN, United States

P113 Modeling the variability of spontaneous astrocyte calcium activity and responses to repeated stimuli

Marsa Taheri¹*, John A. White²

¹University of Utah, Department of Bioengineering, Salt Lake City, UT, United States ²Boston University, Biomedical Engineering, Boston, MA, United States

P114 From connectivity to activity: Community detection reveals multiple simultaneous dynamical regimes within networks

Zoʻ Tosi1*, John Beggs²

¹ Indiana University Bloomington, Cognitive Science Department, BLOOMINGTON, IN, United States ² Indiana University Bloomington, Department of Physics, Bloomington, IN, United States

P115 A generalized platform for modeling electric field effects on neuronal dynamics

Aaron Regan Shifman*, John Lewis

University of Ottawa, Department of Biology, Ottawa, Canada

P116 Synchronization by uncorrelated noise: interacting rhythms in interconnected neuronal networks

Hermann Riecke*, John Meng

Northwestern University, Engineering Sciences and Applied Mathematics, Evanston, IL, United States

P117 Classification of morphological and electrophysiological types in mouse visual cortex

Nathan Gouwens*, Staci Sorensen, Jim Berg, Changkyu Lee, Tim Jarsky, Jonathan Ting, Michael Hawrylycz, Anton Arkhipov, Hongkui Zeng, Christof Koch, Susan Sunkin, David Feng, Colin Farrell, Hanchuan Peng, Ed Lein, Lydia Ng, Amy Bernard, and John Phillips

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P118 Soma-axon coupling configurations that enhance neuronal coincidence detection

Joshua Goldwyn^{1*}, Michiel Remme², and John Rinzel³

 ¹Swarthmore College, Swarthmore, PA, United States
 ²Humboldt University in Berlin, Institute for Theoretical Biology, Berlin, Germany
 ³New York University, Center for Neural Science & Courant Institute of Mathematical Sciences, New York, NY, United States

P119 Short-term plasticity of GABAergic synapses in the Substantia Nigra pars reticulata

Ryan Phillips*, Jonathan Rubin

University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States

P120 Simulating pharmacological blockade of persistent sodium currents in respiratory circuits Ryan Phillips*, Jonathan Rubin

University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States

P121 Weak-noise-induced transitions with inhibition and modulation of neural oscillations

Marius Yamakou*, Juergen Jost Max Planck Institute for Mathematics in Sciences, Leipzig, Germany

P122 Randomness and structure in artificially generated neuronal networks

Lida Kanari*, Henry Markram, and Julian Shillcock

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P123 Moving towards the Single Cell Projectome: A multi-modal approach to assessing single-cell morphology and connectivity for classification of layer 2/3 neurons in mouse V1

Katie Link*, Karla Hirokawa, Nile Graddis, Jennifer Whitesell, Bryan MacLennan, Changkyu Lee, Soumya Chatterjee, Staci Sorensen, and Julie Harris

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P124 Oscillatory and broadband contributions to directed functional connectivity in the human cortex

Julio Chapeton*, Sara Inati, and Kareem Zaghloul National Institutes of Health, NINDS, Bethesda, MD, United States

P125 Facilitatory mechanisms during the encoding of frequency-modulated sweeps in the auditory pathway

Alejandro Tabas¹*, Katharina Von Kriegstein²

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ²Technische Universität Dresden, Faculty of Psychology, Dresden, Germany

P126 A rigorous statistical test supports a new model of homeostatic plasticity

Amanda Hanes*, Andrew Koesters, and Kathrin Engisch

Wright State University, Neuroscience, Cell Biology, & Physiology Department, Dayton, OH, United States

P127 Novel approaches to optimize biophysically detailed computational models of single neurons

Roy Ben-Shalom¹*, Kyung Geun Kim², and Kevin Bender¹

¹University of California, San-Francisco, Neurology, Oakland, CA, United States ²University of California, Berkeley, EE/CS, Berkeley, CA, United States

P128 Construction of a biochemically detailed single-compartment model for post-synaptic long-term potentiation: application to cortical plasticity

Tuomo Mäki-Marttunen¹*, Andrew G. Edwards¹, and Kim T. Blackwell²

¹ Simula Research Laboratory, Oslo, Norway ²George Mason University, Krasnow Institute for Advanced Study, Fairfax, VA, United States

P129 What is the resistivity of the human brain? Insights from direct electrical stimulation, electrocorticographic recordings of the human cortex, and analytic models

David J. Caldwell^{1*}, Jeneva A. Cronin¹, Rajesh P. N. Rao², Andrew L. Ko³, Jeffrey G. Ojemann³, and Larry B. Sorensen⁴

¹University of Washington, Department of Bioengineering, Seattle, WA, United States

²University of Washington, Computer Science and Engineering, Seattle, WA, United States

³University of Washington, Neurological Surgery, Seattle, WA, United States

⁴University of Washington, Department of Physics, Seattle, WA, United States

P130 Improvement of computational efficiency of a biochemical plasticity model

Mikko Lehtimäki^{1*}, Marja-Leena Linne¹, and Lassi Paunonen²

¹Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland ²Tampere University of Technology, Mathematics Laboratory, Tampere, Finland

P131 Modeling traveling wave dynamics in the visual cortex

Lawrence Oprea*

McGill University, Physiology, Montreal, Canada

P132 Cusps enable line attractors and graded information channels in neural computation

Zhuocheng Xiao^{1*}, Jiwei Zhang², Andrew Sornborger³, and Louis Tao⁴

¹University of Arizona, Department of Mathematics, Tucson, AZ, United States ²Beijing Computational Science Research Center, Applied and Computational Mathematics, Beijing, China ³Los Alamos National Laboratory, Computer, Computational, and Statistical Sciences (CCS-3), Los Alamos, NM, United States

⁴Peking University, Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, Beijing, China

P133 Population vector decoding for optical imaging with fNIRS (functional near-infrared spectroscopy)

Nicoladie Tam¹*, George Zouridakis², and Luca Pollonini²

¹University of North Texas, Department of Biological Sciences, Denton, TX, United States ²University of Houston, Department of Engineering Technology, Houston, TX, United States

P134 Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells

Gaute Einevoll¹*, Milad Hobbi Mobarhan², Geir Halnes¹, Pablo Martinez-Canada³, Torkel Hafting⁴, and Marianne Fyhn²

¹Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway
 ²University of Oslo, Department of Biosciences, Oslo, Norway
 ³University of Granada, Granada, Spain
 ⁴University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway

P135 Computational modeling of neuron-astrocyte interactions: Evolution, reproducibility, comparability and future development of models

Tiina Manninen¹, Ausra Saudargiene², Riikka Havela³, and Marja-Leena Linne^{3*}

¹Tampere University of Technology & Stanford University, Faculty of Biomedical Sciences and Engineering & Department of Neurobiology, Tampere, Finland ²Lithuanian University of Health Sciences & Vytautas Magnus University, Neuroscience Institute & Department of Informatics, Kaunas, Lithuania ³Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland

P136 Data-driven study of synchronous population activity in generic spiking neuronal networks: How much do we capture using the minimal model for the considered phenomena?

Jugoslava Acimovic^{1*}, Heidi Teppola¹, Tuomo Mäki-Marttunen², and Marja-Leena Linne¹

¹ Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland ² Simula Research Laboratory, Oslo, Norway

P137 Fast gabaergic neurotransmission inhibits diversely AMPA and NMDA receptor mediated network dynamics in cortical cultures: A model-driven experimental study

Heidi Teppola*, Jugoslava Acimovic, and Marja-Leena Linne

Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland

P138 A neural mass model to predict electrical stimulation evoked responses in human brain

Ishita Basu¹*, Britni Crocker¹, Kara Farnes¹, Madeline Robertson¹, Angelique Paulk¹, Darin Dougherty¹, Sydney Cash¹, Emad Eskandar¹, Alik Widge¹, and Mark Kramer²

¹Massachusetts General Hospital, MA, United States ²Boston University, Mathematical Neuroscience, Boston, MA, United States

P139 Missing data for an electrodiagnostic nerve test

James Bell^{1*}, Kelvin Jones², and Martha White³

¹University of Alberta, Departments of Neuroscience and Computing Science, Edmonton, Canada ²University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Canada ³University of Alberta, Department of Computing Science, Edmonton, Canada

P140 Neural model of the multi-stable dynamics of the perception of body motion

Leonid Fedorov^{1*}, Tjeerd Dijkstra², Louisa Sting³, Howard Hock⁴, and Martin Giese⁵

¹ International Max Planck Research School for Cognitive and Systems Neuroscience, Tuebingen, Germany ² University of Tuebingen, Dept of Cognitive Neurology, Tuebingen, Germany

³University of Tuebingen, GTC & International Max Planck Research School, Tuebingen, Germany

⁴Florida Atlantic University, Center for Complex Systems and the Brain Sciences, Boca Raton, FL, United States ⁵Center for Integrative Neuroscience & University Clinic Tuebingen, Dept of Cognitive Neurology, Tuebingen, Germany

P141 Detecting and classifying neocortical population codes via deep artificial neural networks

Christopher Endemann*, Matthew Banks

University of Wisconsin, Department of Anesthesiology, Madison, WI, United States

P142 Blind recovery of transient responses with higher-order spectra

Christopher Kovach¹*, Hiroto Kawasaki², and Matthew Howard²

¹University of Iowa, Caltech, Iowa City, IA, United States

²University of Iowa Hospitals and Clinics, Neurosurgery, Iowa City, IA, United States

P143 Early spontaneous activity predicts structural changes in layout of orientation domains during early development

Bettina Hein¹*, Sigrid Trägenap¹, David Whitney², Gordon Smith³, David Fitzpatrick², and Matthias Kaschube¹

¹FIAS, Department of Neuroscience, Frankfurt, Germany
 ²Max Planck Florida Institute, Department of Neuroscience, Jupiter, FL, United States
 ³University of Minnesota, Department of Neuroscience, Minneapolis, MN, United States

P144 Multispike Tempotron performance under different task-related neural spiking statistics

Hannes Rapp^{1*}, Martin Paul Nawrot², and Merav Stern³

¹University of Cologne, Computational Systems Neuroscience/Animal Physiology, Cologne, Germany

²University of Cologne, Zoological Institute, Germany

³University of Washington, Applied Mathematics, Seattle, WA, United States

P145 Modeling mouse visual cortex

Michael Oliver*, Gabriel Ocker, Peter Ledochowitsch, Nicholas Cain, Saskia E. J. de Vries, and Michael A. Buice

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P146 On the correspondence between receptive fields derived from spikes versus calcium

Peter Ledochowitsch^{1*}, Nicholas Cain¹, Joshua Siegle¹, Xiaoxuan Jia², Michael Oliver¹, Ulf Knoblich³, Lawrence Huang³, Brian Hu¹, Gabriel Ocker¹, Daniel Millman¹, Séverine Durand¹, Ramakrishnan Iyer¹, Lu Li³, Shawn Olsen¹, R Clay Reid¹, Hongkui Zeng¹, Stefan Mihalas¹, Saskia E. J. de Vries¹, and Michael A. Buice¹

¹ Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States
 ² Allen Institute for Brain Science, Neural Coding, Seattle, WA, United States
 ³ Allen Institute for Brain Science, Celltypes, Seattle, WA, United States

P147 The structure of population activity and coding in mouse visual cortex.

Gabriel Ocker*, Peter Ledochowitsch, Daniel Millman, Michael Oliver, Nicholas Cain, Saskia E. J. de Vries, and Michael A. Buice

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P148 Online biologically plausible decoding of clusters in retinal population activity

Adrianna Loback*, Michael Berry

Princeton University, Department of Neuroscience, Princeton, NJ, United States

P149 Towards a computational account of theta band (4-8 Hz) power modulation in the subthalamic nucleus during response conflict condition.

Prannath Moolchand¹*, Stephanie Jones¹, and Michael Frank²

¹Brown University, Department of Neuroscience, Providence, RI, United States ²Brown University, Department of Cognitive, Linguistic & Psychological Sciences, Providence, RI, United States

P150 Mediodorsal thalamus permits cognitive flexibility by suppressing conflicting prefrontal representations

Rajeev Rikhye*, Ralf Wimmer, and Michael Halassa

Massachusetts Institute of Technology, Brain and Cognitive Sciences, Cambridge, MA, United States

P151 Long memory in dynamic recurrent networks

Peter Stratton*, Michael Halassa

Massachusetts Institute of Technology, Brain and Cognitive Sciences, Cambridge, MA, United States

P152 Stimulus-dependent tuning in cortical area MST of macaques

Alicia Costalago Meruelo^{1*}, Stefan Glasauer¹, Lukas Brostek¹, and Michael J Mustari²

¹Ludwig-Maximilians-Universität München, Dept of Neurology, Munchen, Germany ²University of Washington, Washington Primate Research Center, Seattle, WA, United States

P153 Validation and performance of effective network inference using multivariate transfer entropy with IDTxl

Leonardo Novelli^{1*}, Patricia Wollstadt², Pedro A. M. Mediano³, Joseph Lizier¹, and Michael Wibral²

¹ The University of Sydney, Centre for Complex Systems, Sydney, Australia ²Goethe University Frankfurt, MEG Unit, Brain Imaging Centre, Frankfurt am Main, Germany ³Imperial College London, Department of Computing, London, United Kingdom

P154 Generative models on accelerated neuromorphic hardware

Akos Ferenc Kungl¹*, Karlheinz Meier¹, Sebastian Schmitt¹, Johann Klahn¹, Paul Muller¹, Andreas Baumbach¹, Dominik Dold¹, Alexander Kugele¹, Eric Muller², Christoph Koke¹, Mitja Kleider¹, Christian Mauch¹, Oliver Breitwieser¹, Maurice Guttler¹, Dan Husmann¹, Kai Husmann¹, Andreas Hartel¹, Vitali Karasenko¹, and Andreas Grubl¹

¹Heidelberg University, Kirchhoff Institute for Physics, Heidelberg, Germany ²Kirchhoff Institute for Physics, Heidelberg University - Department for Physics and Astronomy, Germany ³Heidelberg University & University Bern, Kirchhoff Institute for Physics & Department of Physiology, Switzerland

P155 Modeling rhythmic control of brain sequential dynamics

Roberto Latorre¹, Pablo Varona^{1*}, and Mikhail I. Rabinovich²

¹Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain ²University of California, San Diego, BioCircuits Institute, La Jolla, CA, United States

P156 An excitation / inhibition ratio impacts on organization of neural connectivity and information transfer

Motohiro Ogura*, Jihoon Park, Yuji Kawai, and Minoru Asada Osaka University, Suita, Osaka, Japan

P157 Intrinsically bursting neurons enlarge timescales of fluctuations in firing rates

Tomohiro Miki*, Yuji Kawai, Jihoon Park, and Minoru Asada

Osaka University, Suita, Osaka, Japan

P158 Acetylcholine modulation in a biophysical model of cortical neuron

Vinícius Cordeiro¹*, Parviz Ghaderi², Sareh Rostami², Rodrigo F. O. Pena¹, Renan O. Shimoura¹, Antônio C. Roque¹, and Mir Shahram Safari²

¹ University of São Paulo, Department of Physics, Ribeirão Preto, Brazil ² Shahid Beheshti University of Medical Science, Neuroscience Research Center, Tehran, Islamic Republic of Iran

P159 Anesthesia modifies subthreshold critical slowing in a stochastic Hodgkin-Huxley neuron exposed to inhibitory synaptic noise

Alex Bukoski^{1*}, D Alistair Steyn-Ross², Ashley Pickett³, and Moira L Steyn-Ross²

¹University of Missouri, Columbia, MO, United States

²University of Waikato, School of Engineering, Hamilton, New Zealand

³Auburn University, College of Veterinary Medicine, Auburn, AL, United States

P160 Identifying 'influential seizers' in a network model of focal epilepsy

Christian Fink*, Joe Emerson, and Momi Afelin

Wesleyan University, Physics and Neuroscience, Delaware, OH, United States

P161 Rich dynamical repertoire in the balanced state

David Dahmen*, Lukas Deutz, and Moritz Helias

Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Juelich, Germany

P163 Prefrontal oscillations bias pathways for thought and action

Jason Sherfey¹*, Joachim Hass², Salva Ardid³, Michael Hasselmo¹, and Nancy Kopell³

¹Boston University, Psychological and Brain Sciences, Boston, MA, United States ²Central Institute of Mental Health, BCCN Heidelberg-Mannheim, Mannheim, Germany ³Boston University, Mathematics and Statistics, Boston, MA, United States

P164 From single neurons to perception: Examining the basis for sensory deficits in autism

Rashid Williams-Garcia^{1*}, G. Bard Ermentrout², and Nathan Urban³

¹University of Pittsburgh, Department of Neurobiology & Department of Mathematics, Pittsburgh, PA, United States
 ²University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
 ³University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, United States

P165 Cortical information integration with critical subnetworks: Large capacity, high accuracy, and rapid detection.

Maik Schünemann*, Udo Ernst, and Nergis Tomen

University of Bremen, Institute for Theoretical Physics, Bremen, Germany

P166 Neuroscience gateway: Enabling large scale simulations and data processing and dissemination of neuroscience tools/software

Amitava Majumdar¹*, Subhashini Sivagnanam¹, Kenneth Yoshimoto¹, and Nicholas Carnevale²

¹University of California, San Diego, San Diego Supercomputer Center, La Jolla, CA, United States ²Yale University, Neuroscience, New Haven, CT, United States

P167 Computational model of the conditional probability of decision-making process as an optimization process

Nicoladie Tam*

University of North Texas, Department of Biological Sciences, Denton, TX, United States

P168 PyRates - A Python framework for rate-based neural simulations

Richard Gast*, Thomas Knoesche, Daniel Rose, Harald Möller, and Nikolaus Weiskopf *MPI for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany*

P169 A stochastic model of single serotonergic fibers

Skirmantas Janusonis¹*, Bangalore Manjunath², and Nils-Christian Detering³

¹University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, CA, United States

²University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, CA, United States

³University of California, Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA, United States

P170 Neural model for the recognition of agency and social interaction from abstract stimuli

Mohammad Hovaidi Ardestani¹, Martin Giese^{2*}, and Nitin Saini²

¹ University Clinic Tübingen, Tübingen, Germany ²Center for Integrative Neuroscience & University Clinic Tübingen, Dept of Cogniitive Neurology, Germany

P171 Learning oscillatory brain dynamics: van der Pol meets LSTM

Germán Abrevaya¹, Aleksandr Aravkin^{2*}, Guillermo Cecchi³, Irina Rish³, Silvina Dawson⁴, and Pablo Polosecki³

¹Universidad de Buenos Aires & CONICET, Departamento de Física, FCEyN and IFIBA, Buenos Aires, Argentina ²University of Washington, Department of Applied Mathematics, Seattle, WA, United States ³IBM TJ Watson Research Center, Yorktown Heights, United States ⁴University of Buenos Aires, Departamento de Física, FCEyN, UBA and IFIBA, Buenos Aires, Argentina

P172 A cross-platform real-time model library to build hybrid neural circuits

Rodrigo Amaducci, Manuel Reyes-Sanchez, Irene Elices Ocon, Francisco B Rodriguez, and Pablo Varona*

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

P173 Unveiling and characterizing dynamical invariants in central pattern generators

Irene Elices Ocon^{1*}, Manuel Reyes-Sanchez¹, Rodrigo Amaducci¹, Rafael Levi², Francisco B Rodriguez¹, and Pablo Varona¹

¹Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain
²University of Southern California, Department of Biological Sciences, Los Angeles, CA, United States

P174 Point process-based dynamic functional connectivity with source-reconstructed EEG data

Katharina Glomb^{1*}, David Pascucci², Sebastien Tourbier¹, Margherita Carboni³, Maria Rubega⁴, Serge Vulliemoz³, Gijs Plomp², and Patric Hagmann¹

¹CHUV, Department of Radiology, Lausanne, Switzerland
²University of Fribourg, Department of Psychology, Fribourg, Switzerland
³University Hospital of Geneva & University of Geneva, Department of Fundamental Neurosciences, Geneva, Switzerland

⁴University of Geneva, Department of Fundamental Neurosciences, Geneva, Switzerland

P175 Modeling the spatial inhomogeneous degradation of nitric oxide shows a key role of anatomically localized NO production

William Haselden*, Ravi Kedarasetti, and Patrick Drew

Pennsylvania State University, Engineering Science and Mechanics, State College, PA, United States

P176 A Bayesian, biophysical framework for spike sorting

Kevin Lin*, Patrick Greene

University of Arizona, Department of Applied Mathematics, Tucson, AZ, United States

P177 A detailed model of the hippocampal formation for the generation of Sharp-Wave Ripples and Theta-nested Gamma oscillations

Amelie Aussel¹*, Radu Ranta¹, Laure Buhry¹, Louise Tyvaert², and Patrick Henaff¹

¹ Université de Lorraine, CRAN UMR 7039, Nancy, France ² University Hospital (CHU) Nancy, Nancy, France

P178 A mechanistic model explains auditory evoked responses as a reflection of network properties of the entire auditory cortex

Artur Matysiak^{1*}, Aida Hajizadeh¹, Nina Härtwich¹, Reinhard König¹, and Patrick May²

¹Leibniz Institute for Neurobiology, Special Lab for Non-Invasive Brain Imaging, Magdeburg, Germany ²Lancaster University, Department of Psychology, Lancaster, United Kingdom

P179 Noisy deep networks with short-term plasticity make similar errors as mice in a detection of change task

Jiaqi Shang¹, Brian Hu²*, Shawn Olsen², Stefan Mihalas², Doug Ollerenshaw², Marina Garrett², Justin Kiggins², and Peter Groblewski²

¹Northwestern University, Northwestern University, Evanston, IL, United States ²Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P180 Statistical properties of strengths of structural and functional connectivity

Xiao Gao*, Peter Robinson

The University of Sydney, School of Physics, Sydney, Australia

P181 Plasticity of information coding by cerebellar Purkinje cells during sensorimotor learning

Sungho Hong¹*, Erik De Schutter¹, Akshay Markanday², Ayaka Usui³, and Peter Thier²

¹Okinawa Institute of Science and Technology, Computational Neuroscience Unit, Okinawa, Japan ²University of Tübingen, Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Tübingen, Germany ³Okienen lastitute of Okienen and Technology, Counters Sustance Unit. Okienen, Japan

³Okinawa Institute of Science and Technology, Quantum Systems Unit, Okinawa, Japan

P182 A systematic comparison of neural morphology representations in the context of cell type discrimination

Sophie Laturnus*, Ziwei Huang, and Philipp Berens

Institute of Ophthalmic Research, Neural Data Science for Vision Research, Tuebingen, Germany

P183 Online accurate spike sorting for hundreds of channels

Baptiste Lefebvre, Olivier Marre, and Pierre Yger*

Institut De La Vision, Computational Neuroscience, Paris, France

P184 Time step sensitivity in large scale compartmental models of the neocortex

Joshua Crone¹, David Boothe¹, Alfred Yu², Kelvin Oie², and Piotr Franaszczuk^{2*}

¹U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground, MD, United States

²U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States

P185 Electrical coupling of perisomatic and distal apical regions of a layer 5 pyramidal neuron compartmental model

Melvin Felton¹, Alfred Yu², David Boothe¹, Kelvin Oie², and Piotr Franaszczuk^{2*}

¹U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground, MD, United States

²U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, MD, United States

P186 Impact of small world connectivity on a multi-region model of cerebral cortex

David Boothe^{1*}, Alfred Yu², Kelvin Oie², and Piotr Franaszczuk²

¹U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground, MD, United States

²U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, MD, United States

P187 Transcranial direct current stimulation (tDCS) is impacted by neuronal morphology and spatial configuration

Alfred Yu¹, David Boothe^{2*}, Kelvin Oie¹, and Piotr Franaszczuk¹

¹U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States ²U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground, MD, United States

P188 Simulating extracellular signatures of action potentials using single compartment neurons and geometrical filtering

Harry Tran*, Steven Le Cam, Valérie Louis Dorr, and Radu Ranta

Université de Lorraine, CRAN UMR 7039, Nancy, France

P189 Learning the payoffs and costs of actions

Moritz Moeller*, Rafal Bogacz

University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom

P190 A network of intrinsic oscillators can drive forward locomotion in C. elegans

Erick Olivares*, Eduardo Izquierdo, and Randall Beer

Indiana University, Cognitive Science Program, School of Informatics and Computing, Bloomington, IN, United States

P191 Computational validation of a closed loop neuromorphic controller for ventilatory control

Ricardo Siu¹*, James Abbas², Brian Hillen¹, Sylvie Renaud³, and Ranu Jung¹

¹ Florida International University, Biomedical Engineering, Miami, FL, United States
 ² Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States
 ³ Université de Bordeaux, IMS Laboratoire – Bordeaux INP, Talence, France

P192 Modeling the altered function of canonical feedback inhibitory circuits in chronic epilepsy

Christian Klos^{1*}, Leonie Pothmann², Oihane Horno³, Oliver Braganza², Heinz Beck², and Raoul-Martin Memmesheimer¹

¹ University of Bonn, Neural Network Dynamics and Computation, Institute of Genetics, Bonn, Germany ² University of Bonn, Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology, Bonn, Germany

³Champalimaud Center for the Unknown, Cortical Circuits Laboratory and Theoretical Neuroscience Laboratory, Lisbon, Portugal

P193 Investigating impact of synaptic inputs in seizure models

Cengiz Gunay*, Reuben Massaquoi

Georgia Gwinnett College, School of Science and Technology, Lawrenceville, GA, United States

- P194 Fundamental neuromechanical components of robust forward locomotion in C. Elegans Carter Johnson*, Timothy Lewis, and Robert Guy University of California, Davis, Department of Applied Mathematics, Davis, CA, United States
- P195 A reservoir computing model of motor learning with parallel cortical and basal ganglia pathways Ryan Pyle*, Robert Rosenbaum University of Notre Dame, Applied and Computational Mathematics and Statistics, South Bend, IN, United States
- P196 Dynamic features of neural responses to triplet-streaming simulated by integrate-and-fire networks of core auditory cortex

Aarati Mahat, Rodica Curtu* University of Iowa, Department of Mathemathics, Iowa City, IA, United States

P197 Reduction of conductance-based neuron models for neuromodulation studies

Tomas van Pottelbergh*, Rodolphe Sepulchre University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P198 System identification of neuronal dynamics

Thiago Burghi^{*}, Rodolphe Sepulchre University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P199 Neuromorphic hyperpolarized bursting

Luka Ribar*, Rodolphe Sepulchre University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P200 Robust regulation of neuronal dynamics by the Na/K pump

Gennady Cymbalyuk^{1*}, Christian Erxleben², Angela Wenning-Erxleben², and Ronald Calabrese²

¹Georgia State University, Neuroscience Institute, Atlanta, GA, United States ²Emory University, Department of Biology, Atlanta, GA, United States

P201 Gender differences in intrinsic oscillations of the resting brain following brief mindfulness intervention

Yi-Yuan Tang^{1*}, Rongxiang Tang²

¹ Texas Tech University, Lubbock, TX, United States ² Washington University in St. Louis, Psychological and Brain Sciences, St. Louis, WA, United States

P202 Tonic-to-bursting transitions in synchronous gap junction coupled neurons

Epaminondas Rosa*, Rosangela Follmann

Illinois State University, School of Information Technology, Normal, IL, United States

P203 Resting-state dynamics in a large-scale spiking model of the visual areas of macaque cortex

Maximilian Schmidt¹, Rembrandt Bakker², Kelly Shen³, Gleb Bezgin⁴, Claus Hilgetag⁵, Markus Diesmann⁶, and Sacha J. van Albada⁷*

¹ RIKEN Brain Science Institute, Wako-shi, Germany
 ² Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
 ³ Baycrest, Rotman Research Institute, Toronto, Canada
 ⁴ McGill University, McConnell Brain Imaging Centre, Montreal, Canada
 ⁵ University Medical Center Eppendorf, Department of Computational Neuroscience, Hamburg, Germany
 ⁶ Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6) & Institute for Advanced Simulation (IAS-6), Juelich, Germany
 ⁷ Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P204 In the footsteps of learning: Changes in network dynamics and dimensionality with task acquisition

Merav Stern¹*, Shawn Olsen², Eric Shea-Brown¹, Yulia Oganian³, and Sahar Manavi²

¹University of Washington, Department of Applied Mathematics, Seattle, WA, United States ²Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ³University of California, San Francisco, School of Medicine, San Francisco, CA, United States

P205 Implementation of CA1 microcircuits model in NetPyNE and exploration of the effect of neuronal/synaptic loss on memory recall

Ángeles Tepper^{1*}, Adam Sugi², William Lytton³, and Salvador Dura-Bernal³

¹Pontifical Catholic University of Chile, Santiago, Chile

²Universidade Federal do Paraná, Curitiba, Brazil

³SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States

P206 Modular science: Towards online multi application coordination on inhomogeneous high performance computing and neuromorphic hardware systems

Abigail Morrison, Alexander Peyser*, Wouter Klijn, and Sandra Diaz-Pier

Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P207 Characteristic region-specific Neuronal plasticity by PrP peptide aggregates in rat organotypic hippocampal slice cultures

Sang Seong Kim*

Hanyang University, Department of Pharmacy, Ansan, Republic of Korea

P208 Burst control and noise modulation by Nav1.6 persistent and resurgent sodium channel currents in sensory neurons

Sharmila Venugopal^{1*}, Soju Seki², David H Terman³, Antonios Pantazis⁴, Riccardo Olcese⁵, Martina Wiedau-Pazos⁶, and Scott H Chandler²

¹University of California, Los Angeles, Los Angeles, CA, United States

²University of California, Los Angeles, Integrative Biology and Physiology, Los Angeles, CA, United States

³The Ohio State University, Department of Mathematics, Columbus, OH, United States

⁴University of California, Los Angeles, Anesthesiology Department, Los Angeles, CA, United States

⁵University of California, Los Angeles, Departments of Anesthesiology and Physiology, Los Angeles, CA, United States

⁶University of California, Los Angeles, Department of Neurology, Los Angeles, CA, United States

P209 A dynamic resource model for sequential working memory

Hyeonsu Lee^{1*}, Woochul Choi^{1,2}, Youngjin Park¹, and Se-Bum Paik^{1,2}

¹ Korea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, Daejeon, Republic of Korea

²Korea Advanced Institute of Science and Technology, Program of Brain and Cognitive Engineering, Daejeon, Republic of Korea

P210 Retinal development of cortical functional circuits

Jaeson Jang¹*, Min Song^{1,2}, and Se-Bum Paik^{1,2}

¹ Korea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, Daejeon, Republic of Korea

²Korea Advanced Institute of Science and Technology, Program of Brain and Cognitive Engineering, Daejeon, Republic of Korea

P211 A hierarchical neural network model for non-Hebbian dynamics of memory ensemble

Youngjin Park¹*, Se-Bum Paik^{1,2}

¹ Korea Advanced Institute of Science and Technology, Department of Bio and Brain Engineering, Daejeon, Republic of Korea

²Korea Advanced Institute of Science and Technology, Program of Brain and Cognitive Engineering, Daejeon, Republic of Korea

P212 Data-driven models of interneurons in the somatosensory thalamus and comparison with gene expression data

Elisabetta lavarone¹*, Jane Yi¹, Ying Shi¹, Christian O'Reilly¹, Werner Alfons Hilda van Geit¹, Christian A Rössert¹, Henry Markram¹, and Sean Hill²

¹ École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland ² University of Toronto & EPFL, Centre for Addiction and Mental Health and Blue Brain Project, Toronto, Canada

P213 Network connectivity effects on multisensory integration in neocortex

Svetlana Gladycheva*, Bailey Conrad, and Sean Powell

Towson University, Department of Physics, Towson, MD, United States

P214 A general method to generate artificial spike train populations

Samira Abbasi¹, Dieter Jaeger^{2*}, and Selva Maran²

¹Hamedan University of Technology, Biomedical Engineering, Hamedan, Islamic Republic of Iran ²Emory University, Department of Biology, Atlanta, GA, United States

P215 Laminar contributions to auditory feature processing

Vergil Haynes¹*, Sharon Crook^{1,2}

¹ Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ, United States ² Arizona State University, School of Life Sciences, Tempe, AZ, United States

P216 Rapid selection of NeuroML models via NeuroML-DB.org

Justas Birgiolas¹*, Richard Gerkin¹, and Sharon Crook^{1,2}

¹ Arizona State University, School of Life Sciences, Tempe, AZ, United States ² Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ, United States

P217 Multiscale model validation with SciUnit

Richard Gerkin^{1*}, Russell J Jarvis¹, and Sharon Crook^{1,2}

¹ Arizona State University, School of Life Sciences, Tempe, AZ, United States ² Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ, United States

P218 Rivalry with irregular spiking: a comparison of mutual inhibition and random networks

Benjamin Cohen*, Carson Chow, and Shashaank Vattikuti

National Institute of Health, NIDDK, Lab of Biological Modeling, Bethesda, MD, United States

P219 An ensemble modeling approach to identifying cellular mechanisms in thoracic sympathetic neurons

Kun Tian¹*, Astrid Prinz¹, Michael McKinnon², and Shawn Hochman²

¹Emory University, Department of Biology, Atlanta, GA, United States ²Emory University, Department of Physiology, Atlanta, GA, United States

P220 Functional connectivity in mouse visual cortex revealed by large scale recordings

Xiaoxuan Jia*, Joshua Siegle, Gregg Heller, Séverine Durand, and Shawn Olsen Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P221 Building individualized dynamic brain models at high spatial resolution using fMRI

Matthew Singh¹*, Todd Braver², and Shinung Ching³

¹Washington University, St. Louis, Department of Neuroscience, St. Louis, MO, United States
 ²Washington University, St. Louis, Department of Psychology, St. Louis, MO, United States
 ³Washington University, St. Louis, Electrical and Systems Engineering, St. Louis, MO, United States

P222 Revisiting efficient coding of natural sounds in the environment: unsupervised learning or taskbased optimization?

Hiroki Terashima*, Shigeto Furukawa

NTT Communication Science Laboratories, Sagamihara, Japan

P223 Emergence of auditory-system-like representation of amplitude modulation in a deep neural network trained for sound classification.

Takuya Koumura*, Hiroki Terashima, and Shigeto Furukawa

NTT Communication Science Laboratories, Atsugi, Japan

P224 Reproducing the cognitive function with the robustness against the brain structure and with the efficient learning algorithm

Yoshihisa Fujita*, Shin Ishii

Kyoto University, Graduate School of Informatics, Kyoto, Japan

P226 Top-down influence on V1 responses caused by reinforcement learning of adaptive behavior

Yoshiki Kashimori^{1*}, Ryo Tani¹, and Shiro Yano²

¹University of Electro-Communications, Dept. of Engineering Science, Chofu, Tokyo, Japan ²Tokyo University of Agriculture and Technology, Division of Advanced Information Technology and Computer Science, Tokyo, Japan

P227 Uncertainpy: A Python toolbox for uncertainty quantification and sensitivity analysis of computational neuroscience models.

Geir Halnes¹*, Gaute Einevoll¹, and Simen Tennøe²

¹Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway ²University of Oslo, Department of Informatics, Oslo, Norway

P228 The emergence of spatiotemporal spike patterns and feature binding relations within a spiking neural network model of the primate visual cortex: a cortical implementation of capsule networks.

James Isbister*, Simon Stringer

University of Oxford, Department of Experimental Psychology, Oxford, United Kingdom

P229 Inhibitory plasticity moulding excitatory spatio-temporal receptive fields in a spiking neural network model

Nasir Ahmad^{1*}, Kerry Walker², and Simon Stringer¹

¹University of Oxford, Department of Experimental Psychology, Oxford, United Kingdom ²University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom

P230 Learning to be modular: Interplay between dynamics of synaptic strengths and neuronal activity in the brain results in its modular connection topology

Janaki Raghavan¹*, Sitabhra Sinha²

¹University of Madras & The Institute of Mathematical Sciences, Department of Physics, Chennai, India ²The Institute of Mathematical Sciences, Theoretical Physics, Chennai, India

P231 Uncovering the mesoscopic organisation of the macaque brain

Anand Pathak*, Shakti N. Menon, and Sitabhra Sinha

The Institute of Mathematical Sciences, Theoretical Physics, Chennai, India

P232 Multimodal modeling of neural network activity: computing LFP, ECoG, EEG and MEG signals with LFPy2.0

Espen Hagen^{1*}, Torbjørn V Ness², Gaute Einevoll², and Solveig Næss³

¹University of Oslo, Department of Physics, Oslo, Norway ²Norwegian University of Life Sciences, Faculty of Science and Technology, Ås, Norway ³University of Oslo, Department of Informatics, Oslo, Norway

P233 Quantitative comparison of a mesocircuit model with motor cortical resting state activity in the macaque monkey

Michael Von Papen^{1*}, Nicole Voges¹, Paulina Dabrowska¹, Johanna Senk¹, Espen Hagen², Markus Diesmann¹, David Dahmen¹, Lukas Deutz³, Moritz Helias¹, Thomas Brochier³, Alexa Riehle³, and Sonja Gruen¹

¹Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Juelich, Germany

²University of Oslo, Department of Physics, Oslo, Norway

³CNRS - Aix-Marseille Université, Institut de Neurosciences de la Timone (INT), Marseille, France

P234 Generalized phase resetting and phase-locked mode prediction in biologically-relevant neural networks

Dave Austin*, Sorinel Oprisan

College of Charleston, Department of Physics and Astronomy, Charleston, SC, United States

P235 Recruitment of neurons into neural ensembles based on dendritic plateau potentials

Peng Gao¹*, Joe Graham², Sergio Angulo², Salvador Dura-Bernal², Michael Hines³, William Lytton², and Srdjan Antic⁴

¹UCONN Health, Department of Neuroscience, Farmington, CT, United States

²SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States

³Yale University, Department of Neuroscience, CT, United States

⁴University of Connecticut Health Center, Department of Neuroscience, Farmington, CT, United States

P236 Integrating large brain networks and network analysis to understand the epileptogenic zone

Adam Li^{1*}, Marmaduke Woodman², Viktor Jirsa², and Sridevi Sarma¹

¹ Johns Hopkins University, Biomedical Engineering, Baltimore, CA, United States ² Aix-Marseille Universite, Institute de Neurosciences, Marseille, France

P237 A high resolution data-driven model of the mouse connectome

Joseph Knox¹*, Kameron Decker Harris², Nile Graddis¹, Jennifer Whitesell¹, Julie Harris¹, Hongkui Zeng¹, Eric Shea-Brown³, and Stefan Mihalas¹

¹Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States ²University of Washington, Department of Computer Science, Seattle, WA, United States ³University of Washington, Department of Applied Mathematics, Seattle, WA, United States

P238 Convolutional neuronal networks with extra-classical receptive fields

Brian Hu*, Stefan Mihalas

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P239 Cortical circuits implement optimal context integration

Ramakrishnan lyer*, Stefan Mihalas

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P240 Identifying the constraints and redundancies shaping the retinal code with a deep network simulation

Jack Lindsey*, Surya Ganguli, and Stephane Deny

Stanford University, Department of Applied Physics, Stanford, CA, United States

P241 Biophysical modeling of human MEG reveals two mechanisms effected by bandlimited transients in perceiving weak stimuli

Robert Law*, Hyeyoung Shin, Shane Lee, Christopher Moore, and Stephanie Jones

Brown University, Department of Neuroscience, Providence, RI, United States

P242 Multiplexed coding using differentially synchronized spikes: Part 2, experiments.

Dhekra Al-Basha¹*, Milad Lankarany¹, Stephanie Ratté¹, and Steve Prescott²

¹The Hospital for Sick Children, Neurosciences and Mental Health, Toronto, Canada ²University of Toronto & The Hospital for Sick Children, Neurosciences and Mental Health & Dept. Physiology, Institute of Biomaterials and Biomedical Eng, Toronto, Canada

P243 The degenerate basis for excitability: Interpreting the pairwise correlation of parameter values in randomly generated model neurons with equivalent excitability

Arjun Balachandar^{1*}, Steve Prescott²

¹University of Toronto, Faculty of Medicine, Toronto, Canada ²University of Toronto & The Hospital for Sick Children, Neurosciences and Mental Health & Dept. Physiology, Institute of Biomaterials and Biomedical Eng, Toronto, Canada

P244 Multiplexed coding using differentially synchronized spikes: Part 1, theory and simulations

Milad Lankarany^{1*}, Steve Prescott²

¹University of Toronto & The Hospital for Sick Children, Neurosciences & Mental Health, Toronto, Canada ²University of Toronto & The Hospital for Sick Children, Neurosciences and Mental Health & Dept Physiology, Institute of Biomaterials and Biomedical Eng, Toronto, Canada

P245 An efficient neuron conductance modelling approach using dynamic action potential clamp data

Yadeesha Deerasooriya¹*, Géza Berecki², David Kaplan², Saman Halgamuge³, and Steven Petrou²

¹The University of Melbourne, Mechanical Engineering, Melbourne, Australia ²The University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ³The Australian National University, College of Engineering & Computer Science, Canberra, Australia

P246 Unsupervised learning of relative landmark locations using grid cells

Scott Purdy, Subutai Ahmad*

Numenta, Redwood City, CA, United States

P247 Development of direction selectivity via a synergistic interaction between short-term and longterm synaptic plasticity

Nareg Berberian*, Matt Ross, Jean-Philippe Thivierge, and Sylvain Chartier

University of Ottawa, Department of Psychology, Ottawa, Canada

P248 A Bayesian psychophysics model of sense of agency

Roberto Legaspi^{1,2*}, Taro Toyoizumi^{1,2}

¹Laboratory for Neural Computation and Adaption, RIKEN Center for Brain Science, Saitama, Japan ²RIKEN CBS-OMRON Collaboration Center

P249 On and off responses in auditory cortex may arise from a two-layer network with variable excitatory and inhibitory connections

Shih-Cheng Chien^{1*}, Burkhard Maess¹, and Thomas Knoesche²

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ²MPI for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany

P250 Using GPU enhanced neuronal networks to put real-time brains on board

James Knight¹*, Alex Cope², and Thomas Nowotny¹

¹University of Sussex, School of Engineering and Informatics, Brighton, United Kingdom ²University of Sheffield, Sheffield Robotics, Sheffield, United Kingdom

P251 Firing probability for a noisy leaky integrate-and-fire neuron receiving an arbitrary external input signal

Ho Ka Chan*, Thomas Nowotny

University of Sussex, School of Engineering and Informatics, Brighton, United Kingdom

P252 Computing reward prediction errors and learning valence in the insect mushroom body

James Bennett*, Thomas Nowotny

University of Sussex, School of Engineering and Informatics, Brighton, United Kingdom

P253 Characterization of short-term synaptic plasticity in mouse primary visual cortex

Jung Lee*, Stefan Mihalas, Luke Campagnola, Stephanie Seeman, Pasha Davoudian, Alex Hoggarth, and Tim Jarsky

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P254 Spatial patterns of synchrony from electrical synapses in the inferior olive

Thomas Chartrand^{1*}, Mark Goldman², and Timothy Lewis³

¹University of California, Davis, Applied Mathematics and Center for Neuroscience, Davis, CA, United States ²University of California, Davis, Departments of Neurobiology, Physiology and Behavior & Ophthalmology and Vision Science, Davis, CA, United States ³University of California, Davis, Department of Mathematics, Davis, CA, United States

P255 Dopaminergic changes in striatal pathway competition modify specific decision parameters

Jonathan Rubin¹*, Kyle Dunovan², Catalina Vich³, Matthew Clapp⁴, and Timothy Verstynen²

- ¹University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States
- ²Carnegie Mellon University, PA, United States
- ³Universität de les Illes Balears, Spain

⁴University of South Carolina, SC, United States

P256 The mean-field theory of dynamically balanced neuronal networks

Takashi Hayakawa*, Tomoki Fukai

RIKEN Brain Science Institute, Laboratory for Neural Coding and Brain Computing, Wako, Japan

P257 Estimation of model parameters from LFPs of spiking neuron networks using deep learning

Espen Hagen¹*, Gaute Einevoll², Jan-Eirik W Skaar², Alexander J Stasik¹, and Torbjørn V Ness²

¹University of Oslo, Department of Physics, Oslo, Norway ²Norwegian University of Life Sciences, Faculty of Science and Technology, Ås, Norway

P258 Electrical synapses between inhibitory neurons shape the responses of principal neurons to transient inputs in the thalamus: a modeling study

Julie Haas*, Tuan Pham

Lehigh University, Dept. of Biological Sciences, Bethlehem, PA, United States

P259 An auto-encoder architecture for transcriptomic cell type analysis: 2d mapping of mouse cortical cells

Uygar Sumbul*

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P260 Characterizing spatial attributes of structural networks in acute traumatic brain injury

Margaret Mahan¹*, Shivani Venkatesh², Maxwell Thorpe², Tessneem Abdallah², Hannah Casey², Aliya Ahmadi², Mark Oswood³, Charles Truwit³, Chad Richardson⁴, and Uzma Samadani²

¹University of Minnesota, Biomedical Informatics and Computational Biology, Minneapolis, MN, United States
 ²Hennepin County Medical Center, Neurosurgery, Minneapolis, MN, United States
 ³Hennepin County Medical Center, Radiology, Minneapolis, MN, United States
 ⁴Hennepin County Medical Center, General Surgery, Minneapolis, MN, United States

P261 Mass-action vs stochastic simulations of Ca2+ dependent vesicle release latency

Victor Matveev*

New Jersey Institute of Technology, Department of Mathematical Sciences, Newark, NJ, United States

P262 Spike timing based learning in neuronal networks induces a diverse range of states

Benjamin Cramer¹*, David Stöckel¹, Johannes Schemmel¹, Karlheinz Meier¹, and Viola Priesemann²

¹Kirchhoff Institute for Physics, Heidelberg University, Heidelberg, Germany ²Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen University, Göttingen, Germany

P263 Influence of inhibitory circuits in the olfactory bulb on the frequency tuning of mitral cells

Rebecca Miko*, Christoph Metzner, and Volker Steuber

University of Hertfordshire, Biocomputational Rearch Group, Hatfield, United Kingdom

P264 The combined effect of homeostatic structural and inhibitory synaptic plasticity during the repair of balanced networks following deafferentation

Ankur Sinha*, Christoph Metzner, Rod Adams, Neil Davey, Michael Schmuker, and Volker Steuber

University of Hertfordshire, Biocomputational Rearch Group, Hatfield, United Kingdom

P265 The role of chandelier cells in auditory steady-state response deficits in schizophrenia

Christoph Metzner^{1*}, Bartosz Zurowski², and Volker Steuber¹

¹University of Hertfordshire, Biocomputational Rearch Group, Hatfield, United Kingdom ²University of Lübeck, Center for Integrative Psychiatry, Lübeck, Germany

P266 Modeling rod-cone parallel processing in the retina

Adree Songco Aguas¹*, Fred Rieke¹, and William Grimes²

¹University of Washington, Departments of Physiology & Biophysics, Seattle, WA, United States ²National Institutes of Health, Neuroscience Department, Bethesda, MD, United States

P267 Simulation of avalanches in mouse primary motor cortex (M1)

Donald Doherty^{1*}, Subhashini Sivagnanam², Salvador Dura-Bernal³, and William Lytton³

¹SUNY Downstate Medical Center, Department of Anesthiology, Pittsburgh, PA, United States
 ²University of California, San Diego, San Diego Supercomputer Center, La Jolla, CA, United States
 ³SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States

P268 NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models

Salvador Dura-Bernal¹*, Padraig Gleeson², Samuel Neymotin¹, Benjamin A Suter³, Adrian Quintana⁴, Matteo Cantarelli⁵, Michael Hines⁶, Gordon Shepherd⁷, and William Lytton¹

¹SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States ²University College London, Dept. of Neuroscience, Physiology & Pharmacology, London, United Kingdom ³Institute of Science and Technology (IST), Austria ⁴EyeSeeTea Ltd, United Kingdom

⁵Metacell LLC, CA, United States

⁶Yale University, Department of Neuroscience, CT, United States

⁷Northwestern University, Department of Physiology, IL, United States

P269 Extracellular reaction-diffusion in the NEURON simulator: modeling ischemic stroke

Adam J. H. Newton^{1*}, Alexandra H. Seidenstein², Robert McDougal¹, Michael Hines¹, and William Lytton²

¹ Yale University, Department of Neuroscience, New Haven, CT, United States ² SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, United States

P270 Building and visualizing reaction-diffusion simulations in NEURON

Robert McDougal^{1*}, Adam J. H. Newton¹, and William Lytton²

¹ Yale University, Department of Neuroscience, New Haven, CT, United States ² SUNY Downstate Medical Center, Department of Physiology and Pharmacology, Brooklyn, NY, NY, United States

P271 Predicting runway excitation in nonlinear Hawkes processes

Dmitrii Todorov*, Wilson Truccolo

Brown University, Department of Neuroscience, Providence, RI, United States

P272 Multiunit activity patterns in neocortex predict upcoming seizures in human focal epilepsy

Timothée Proix¹*, Mehdi Aghagolzadeh¹, Leigh R. Hochberg², Sydney Cash³, and Wilson Truccolo⁴

¹Brown University, Department of Neuroscience & Institute for Brain Science, Providence, RI, United States ²Brown University, U.S. Department of Veterans Affairs and Institute for Brain Science, Providence, RI, United States

³Massachusetts General Hospital, MA, United States

⁴Brown University, Department of Neuroscience, Providence, RI, United States

P273 Axonal dynamics: Signal propagation and collision

Rosangela Follmann^{1*}, Epaminondas Rosa¹, and Wolfgang Stein²

¹ Illinois State University, School of Information Technology, Normal, IL, United States ² Illinois State University, School of Biological Sciences, Normal, IL, United States

P274 Optimal stimulation protocol in a bistable synaptic consolidation model

Chiara Gastaldi*, Samuel Muscinelli, and Wulfram Gerstner

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P275 Oscillations and chaos in adaptive neural networks

Samuel Muscinelli^{1*}, Tilo Schwalger², and Wulfram Gerstner³

¹École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
²École Polytechnique Fédérale de Lausanne, Laboratory of Computational Neuroscience, Lausanne, Switzerland
³École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland

P276 Adaptation in a cascaded, image-computable model of cortical area MT

Saba Entezari¹, Pamela M Baker², and Wyeth Bair²*

¹University of Washington, Mechanical Engineering, Seattle, WA, United States ²University of Washington, Biological Structure, Seattle, WA, United States

P277 Balancing of orientation preference in primary visual cortex

Ang Li^{1*}, Si Wu¹, Ye Li², and Xiaohui Zhang¹

¹Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China ²Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, Hangzhou, China

P278 Cholinergic modulation of reinforcement learning in the striatum

Robert Capps¹, Taegyo Kim², Khaldoun Hamade², Sergey Markin², Dmitrii Todorov³, William Barnett¹, Elizaveta Latash¹, and Yaroslav Molkov¹*

¹Georgia State University, Department of Mathematics & Statistics, Atlanta, GA, United States
 ²Drexel University College of Medicine, Philadelphia, PA, United States
 ³Brown University, Department of Neuroscience, Providence, RI, United States

P279 Brainstem mechanisms of cardio-respiratory coupling

Elizaveta Latash, Robert Capps, William Barnett, and Yaroslav Molkov*

Georgia State University, Department of Mathematics & Statistics, Atlanta, GA, United States

P280 Cortical dynamics on multiple time-scales drive growth of smooth maps to- gether with local heterogeneity

Caleb Holt¹*, Yashar Ahmadian²

¹University of Oregon, Department of Physics, Eugene, OR, United States ²University of Oregon, Institute of Neuroscience, Eugene, OR, United States

P281 Large-scale cortical model based on structural connectivity on aging APOE-4 allele carriers

Yasunori Yamada*

IBM Research, Tokyo, Japan

P282 Approximate Bayesian inference for a neural mass model of anaesthesia

Philip Maybank^{1*}, Ingo Bojak², Richard G. Everitt¹, and Ying Zheng³

¹University of Reading, Department of Mathematics & Statistics, Reading, United Kingdom ²University of Reading & Donders Centre for Neuroscience, Schools of Systems Engineering & Cognition and Behaviour, Reading, United Kingdom ³University of Reading, Department of Biomedical Sciences & Biomedical Engineering, Reading, United Kingdom

P283 Modeling contrast gain control of fly photoreceptors

Aurel A. Lazar, Nikul Ukani*, and Yiyin Zhou

Columbia University, Department of Electrical Engineering, New York, NY, United States

P284 Effect of floating point precision on dynamics of membrane potential in neural simulation

Kazuhisa Fujita^{1,2*}, Yoshiki Kashimori²

¹Komatsu University, Dept. of Clinical Engineering, Komatsu, Japan ²University of Electro-Communications, Dept. of Engineering Science, Chofu, Tokyo, Japan

P285 Decomposing adaptable elements of optokinetic response into cerebellar and non-cerebellar contributions by modeling and cerebellectomy approach

Shuntaro Miki1*, Robert Baker2, and Yutaka Hirata1

¹Chubu University, Robotics Science and Technology, matsumoto-cho 1200 2422, kasugai-shi, Aichi, Japan ²New York University, Department of Physiology & Neuroscience, 70 Washington Square South,New York, NY, 10012, NY, United States

P286 Differential functions of calcium dynamics in synaptic plasticity

Yinyun Li*, Zhong Zhang

Beijing Normal University, Department of Management, Beijing, China

P287 Multilevel Monte Carlo for spiking neuronal networks

Kevin Lin*, Zhuocheng Xiao

University of Arizona, Department of Applied Mathematics, Tucson, AZ, United States

Appendix

Page Index

Α		
Abbas, James		
Abbasi, Samira		114
Abdala, Ana		. 89
Abdallah, Tessneem		120
Abrevaya, Germán		109
Acimovic, Jugoslava		104
Adams, Rod		
Adnan, Ashfaq		. 91
Afelin, Momi		107
Aft, Tristan		. 93
Aggarwal, Anu		. 91
Aghagolzadeh, Mehdi		
Ahmad, Nasir		
Ahmad, Subutai	100,	118
Ahmadi, Aliya		
Ahmadian, Yashar		
Al-Basha, Dhekra		
Amaducci, Rodrigo		
Amico, Enrico		
Amsalem, Oren		
Anastassiou, Costas A		
Angulo, Sergio		
Antic, Srdjan		
Antille, Nicolas		
Aravkin, Aleksandr		
Ardid, Salva		
Arkhipov, Anton		
Asada, Minoru		
Ausborn, Jessica		
Aussel, Amelie		
Austin, Dave		117

В

Baftizadeh, Fahimeh	94
Bahuguna, Jyotika	
Bair, Wyeth	. 90, 122
Baker, Brittany	94
Baker, Pamela M	122
Baker, Robert	123
Bakker, Rembrandt	113
Balachandar, Arjun	118
Balasubramanian, Vijay	32, 65
Baltruschat, Lothar	99
Banks, Matthew	105
Barnett, William	.89, 122
Bartley, Travis	96
Basu, İshita	
Baumbach, Andreas	
Bayat-Mokhtari, Elham	
Beck, Heinz	111
Beeman, David	
Beer, Randall	
Beggs, John	102

Bell, James	· · · · · · · · · · · · · · · · · · ·	105
Ben-Shalom, Roy		103
Bender, Kevin	•••••••••••••••••••••••••••••••••••••••	103
Bennett, James	•••••••••••••••••••••••••••••••••••••••	119
Berberian, Nareg	•	118
Berecki, Géza		
Berens, Philipp		
Berg, Jim		102
Bernard, Amy		
Berry, Michael		
Berthet, Pierre		
Beyeler, Michael		
Bezgin, Gleb	•••••••••••••••••••••••••••••••••••••••	113
Bick, Christian		93
Billeh, Yazan		
Bird, Alexander		
Birgiolas, Justas		
Blackwell, Kim T		
Bogacz, Rafal		
Boissenin, Adrien		
Bojak, Ingo		
Bologna, Luca Leonardo		. 95
Boothe, David	110, [•]	111
Borisyuk, Alla		. 89
Borst, Alexander		. 89
Bose, Amitabha		
Bower, James		99
Boynton, Geoffrey M		.99
Braganza, Oliver		
Brandman, David		92
Braver, Todd	•••••••••••••••••••••••••••••••••••••••	115
Breitwieser, Oliver	•	107
Brochier, Thomas	•••••••••••••••••••••••••••••••••••••••	116
Brostek, Lukas	•••••••••••••••••••••••••••••••••••••••	106
Buchin, Anatoly		. 94
Budd, Julian Martin Leslie		
Buhry, Laure	•••••••••••••••••••••••••••••••••••••••	109
Buhusi, Catalin		.93
Buhusi, Mona		. 93
Buice, Michael A		
Bukoski, Alex		
Burghi, Thiago		
Burkitt, Anthony		
Buzáki, György		
Byrne, Áine		
-		

С

0	
Cabral, Joana	. 30, 34, 57, 77
Cagnan, Hayriye	30, 47
Cain, Nicholas	105, 106
Calabrese, Ronald	
Calderini, Matias	
Caldwell, David J	
Campagnola, Luke	

Cantaralli Mattaa	101
Cantarelli, Matteo	
Cappareli, Federica	
Capps, Robert	
Carboni, Margherita	
Carhart-Harris, Robin	
Carlson, Kristofor D	
Carnevale, Nicholas	
Carnevale, Ted	
-	
Casey, Hannah	
Cash, Sydney	
Castro, André	
Ceballos, Cesar C	
Cecchi, Guillermo	
Chan, Chi Keung	
Chan, Ho Ka	
Chance, Frances	
Chandler, Scott H	
Chang, Tung-Chun	
Chapeton, Julio	
Chartier, Sylvain	
Chartrand, Thomas	
Chatterjee, Soumya	
Chevtchenko, Grigori	
Chiao, Chuan-Chin	
Chien, Shih-Cheng	
Chindemi, Giuseppe	
Ching, Shinung	
Chintaluri, Chaitanya	
Chittka, Lars	
Choi, Woochul	
Chong, Peter	
Chow, Carson	
Clapp, Matthew	
Clementsmith, Xandre	
Clopath, Claudia	
Cohen, Benjamin	
Conrad, Bailey	
Cope, Alex	
Cordeiro, Vinícius	
Cornelis, Hugo	
Costalago Meruelo, Alicia	
Courcol, Jean-Denis	
Cox, Daniel	
Cramer, Benjamin	
Crocker, Britni	
Crone, Joshua	
Cronin, Jeneva A	
Crook, Sharon	
Cunnington, Taylor	
Cuntz, Hermann	
Curtu, Rodica	
Cymbalyuk, Gennady	
Czerwiński, Michal	

D

Dabrowska, Paulina	116
Dahmen, David	108, 116
Dai, Kael	91,95

Danner, Simon	31. 59
Dauwels, Justin	
Davey, Catherine	
Davey, Neil	
Davison, Andrew	
Davoudian, Pasha	
Dawson, Silvina	
Dayanithi, Govindan	
De Frates, Rebecca	
De Schutter, Erik	
de Vries, Saskia E. J 28, 30, 37, 56, ⁻	
de Wiljes, Oltman	
De, Abhishek	
Deerasooriya, Yadeesha	
Delahunt, Charles	
Delalondre, Fabien	95
Delattre, Vincent	
Deny, Stephane	117
Detering, Nils-Christian	108
Deters, Lisa	
Detorakis, Georgios	
Deutz, Lukas	
Devresse, Adrien	
Diaz-Pier, Sandra	
Diekman, Casey	
Diesmann, Markus	
Dijkstra, Tjeerd	
Dimitrov, Alexander G	
Doherty, Donald	
Dold, Dominik	
Doloc-Mihu, Anca	
Donoghue, John	
Doron, Michael	
Dougherty, Darin	
Dragly, Svenn-Arne	
Drew, Patrick	
Duchet, Benoit	
Dunovan, Kyle	119
Dura-Bernal, Salvador 28, 38, 91, 113, 1 121	17, 120,
Durand, Séverine	106 115
Dutt, Nikil	
Dzemidzic, Mario	

Е

E	
Ebner, Christian	32, 68
Ecker, Andras	95
Edwards, Andrew G.	103
Effenberger, Felix	98
Eilemann, Stefan	
Einevoll, Gaute 28, 41, 90, 97, 104, 11	16, 119
Elices Ocon, Irene	39, 109
Ellingson, Parker	97
Emerson, Joe	107
Endemann, Christopher	105
Engelken, Rainer	.35,84
Engisch, Kathrin	103
Englitz, Bernhard	99

Entezari, Saba1 Epureanu, Bogdan	92
Ermentrout, G. Bard 1	
Ernst, Udo 29, 50, 1	
Eroe, Csaba32,	67
Erxleben, Christian 1	12
Eskandar, Emad 1	05
Everitt, Richard G 1	22
Expert, Paul30,	57

F

Falck, Joanne	
Farnes, Kara	105
Farrell, Colin	
Farrell, Matthew	<mark>96</mark>
Favreau, Cyrille Ph	95
Fedorov, Leonid	105
Felton, Melvin	110
Feng, David	102
Fine, lone	<mark>99</mark>
Fink, Christian	
Fischer, Brian	92
Fitzpatrick, David	105
Follmann, Rosangela	. 112, 121
Fontanini, Alfredo	
Fouriaux, Jeremy	
Franaszczuk, Piotr	110, 111
Frank, Michael	
Freestone, Dean	94
Fujita, Kazuhisa	123
Fujita, Yoshihisa	115
Fukai, Tomoki	119
Furukawa, Shigeto	
Fyhn, Marianne	90, 104

G

Gallimore, Andrew R
Ganguli, Surya117
Gao, Peng117
Gao, Xiao100, 110
Garrett, Marina 110
Gast, Richard 108
Gastaldi, Chiara 121
Gerkin, Richard
Gerstner, Wulfram
Gevaert, Michael95
Gewaltig, Marc-Oliver 32, 67
Ghaderi, Parviz 107
Ghanbari, Abed
Gheorghiu, Medorian91
Giese, Martin 105, 109
Gladycheva, Svetlana114
Glasauer, Stefan
Gleeson, Padraig
Glidden, Alistair M
Glomb, Katharina 34, 77, 109
Goldman, Mark 119
Goldwyn, Joshua 102
Goni, Joaquin101

Goodliffe, Joseph	101
Gourdarzi, Alireza	89
Gouwens, Nathan	91, 102
Graddis, Nile	.103, 117
Graham, Joe	117
Graham, Paul R	100
Gratiy, Sergey	91, 94, 95
Graupner, Michael	95
Graybuck, Lucas	
Grayden, David	90, 94
Green, Jessica	97
Greene, Patrick	109
Griffiths, John	101
Grimes, William	120
Groblewski, Peter	110
Grubl, Andreas	107
Gruen, Sonja	95, 116
Guet-McCreight, Alexandre	32, 66
Gulyas, Attila	95
Gunay, Cengiz	111
Gutierrez, Gabrielle	29, 52
Gutkin, Boris	92
Guttler, Maurice	107
Guy, Robert	112
Gwinn, Ryder	94

н

11	
Härtwich, Nina	110
Haas, Julie	119
Hafting, Torkel	104
Hagen, Espen	119
Hagens, Olivier	. 95
Hagmann, Patric	109
Hajizadeh, Aida	110
Halassa, Michael	106
Halgamuge, Saman	118
Halnes, Geir	116
Hamade, Khaldoun	122
Hanes, Amanda	103
Harris, Julie103,	117
Harris, Kameron Decker88,	117
Hartel, Andreas	107
Haselden, William	109
Hass, Joachim	108
Hasselmo, Michael	
Havela, Riikka	104
Hawkins, Jeff	100
Hawrylycz, Michael	102
Hayakawa, Takashi	119
Haynes, Vergil	
He, Biyu	. 97
Hedrick, Kathryn 30	
Hein, Bettina	
Helias, Moritz108,	116
Heller, Gregg	
Helms, Jessica	.91
Henaff, Patrick	
Hepburn, Iain	. 90

Hernando, Juan 94, 95 Hilgetag, Claus 113 Hill, Sean 114 Hillen, Brian 111 Himmel, Nathaniel 32, 64
Hines, Michael
Hirata, Yutaka123
Hirokawa, Karla103
Hobbi Mobarhan, Milad 90, 104
Hochberg, Leigh R 121
Hochman, Shawn115
Hock, Howard105
Hoggarth, Alex119
Holt, Caleb 122
Homann, Jan29, 46
Hong, Sungho 110
Horno, Oihane
Horwitz, Gregory D98
Hovaidi Ardestani, Mohammad109
Howard, Matthew 105
Hu, Brian 106, 110, 117
Huang, Lawrence
Huang, Ziwei 110
Humble, James 100
Hung, Arthur
Husmann, Dan107
Husmann, Kai 107
Hynes, Jacqueline

I

lavarone, Elisabetta	114
Inati, Sara	103
Isbister, James	116
Ishii, Shin	115
lyer, Ramakrishnan	117
Izquierdo, Alicia	. 89
Izquierdo, Eduardo	111

J	
Jędzejewska-Szmek, Joanna	
Jaeger, Dieter 35, 82, 7	114
Jain, Mika	. 99
Jang, Jaeson	114
Janusonis, Skirmantas	
Jarsky, Tim 102, 1	
Jarvis, Russell J	
Jedlicka, Peter 32,	
Jezzini, Ahmad	
Jia, Xiaoxuan 106, 1	
Jiang, Chun	
Jimenez, Silvia	
Jirsa, Viktor	
Johnson, Carter	
Johnson, Sarah	
Jones, Kelvin	
Jones, Stephanie 106,	
Jordan, Jakob	
Jost, Juergen	
Jung, Kyesam	.98

Jung, Ranu	111
Jung, Suh Woo	95
Juusola, Mikko	100

~

ĸ	
König, Reinhard	
Kahl, Taylor	
Kali, Szabolcs	. 95
Kameneva, Tatiana	
Kamiji, Nilton Liuji	
Kanari, Lida95, 1	102
Kang, Jiyoung	.98
Kang, Louis	65
Kaplan, David	118
Karasenko, Vitali	107
Kareken, David	101
Kaschube, Matthias	105
Kashimori, Yoshiki 115, 1	123
Kassegne, Sam	
Kawai, Yuji	107
Kawasaki, Hiroto	
Kedarasetti, Ravi	109
Keijzer, Fred32	, 70
Keine, Christian	
Khan, Muhammad	
Khorasani, Abed	
Kiggins, Justin	
Kim, Chang Sub	
Kim, Chang-Eop	
Kim, Jimin	
Kim, Kyung Geun	
Kim, Sang Seong	
Kim, Taegyo	
Kim, Taekjun	
King, James 32, 67, 94,	95
Klahn, Johann	
Kleider, Mitja	
Klijn, Wouter	
Klos, Christian	
Knight, James	119
Knoblich, Ulf	
Knoesche, Thomas 108,	
Knox, Andrew	
Knox, Joseph	
Ko, Andrew L	
Koay, Sue-Ann	
Koch, Christof	
Koesters, Andrew	
Koke, Christoph	
Koolen, Lucas	
Kopell, Nancy	
Kordus, Stepan	
Kostal, Lubomir	. 90 74
Koumura, Takuya	
Kovach, Christopher	
Kowalska, Marta	
Kozloski, James	

Kramer, Mark	105
Krichmar, Jeffrey L	100
Kringelbach, Morten	30, 57
Kuebler, Eric	100
Kugele, Alexander	107
Kumbhar, Pramod	95
Kungl, Akos Ferenc	107
Kunkel, Susanne	88
Kusmierz, Lukasz	89
Kutz, J. Nathan	.31,63

L

La Camera, Giancarlo	
Lajoie, Guillaume35	
Lambert, Philippe	100
Lankarany, Milad	
Lapish, Christopher	
Latash, Elizaveta	
Latorre, Roberto	
Laturnus, Sophie	
Lau, Hakwan	
Lavin, Antonieta	
Law, Robert	
Lawrence, J. Josh	
Lazar, Aurel A	
Le Cam, Steven	
Ledochowitsch, Peter 30, 56, 105,	106
Lee, Aaron	
Lee, Changkyu 102,	
Lee, Hyeonsu	
Lee, Jung	
Lee, Nathan	
Lee, Shane	
Lee, Soo Yeun	
Lefebvre, Baptiste	
Lefebvre, Jeremie	
Legaspi, Roberto	
Lehtimäki, Mikko	
Lein, Ed	
Lepperød, Mikkel	
Levenstein, Daniel	
Levi, Rafael	
Levin, Roman	
Lewis, John	
Lewis, Timothy112,	
Li, Adam	
Li, Ang	122
Li, Lu	
Li, Ye	
Li, Yinyun	123
Lian, Yanbo	. 90
Lin, Kevin 109,	123
Lindner, Benjamin	. 92
Lindsey, Jack	
Link, Katie	
Linne, Marja-Leena 103,	
Linsenbardt, David	
Liu, Pei Hsien	
,	

Lizier, Joseph	107
Lizier, Joseph T	34, 74
Lo, Chung-Chuan	93
Loback, Adrianna	106
Lopez-Hazas, Jessica	96
Lord, Louis-David	30, 57
Louis Dorr, Valérie	111
Luebke, Jennifer	101
Lytton, William 28, 38, 113, 117, 12	20, 121

М

Mäki-Marttunen, Tuomo103, 1	104
Möller, Harald	
MacLaurin, James	100
MacLennan, Bryan	103
Maess, Burkhard	118
Mahan, Margaret	120
Mahat, Aarati	112
Majumdar, Amit 34,	80
Majumdar, Amitava	108
Maksymchuk, Natalia	97
Malthe-Sørensen, Anders	. 90
Manavi, Sahar	113
Manjunath, Bangalore	108
Mann, Rusty	. 94
Manninen, Tiina	104
Maran, Selva	114
Marder, Eve	45
Markanday, Akshay	110
Markin, Sergey	122
Markram, Henry	114
Marre, Olivier	110
Marsalek, Petr	100
Marshall, James A. R	100
Martinez-Canada, Pablo	104
Massaquoi, Reuben	111
Matveev, Victor	
Matysiak, Artur	110
Mauch, Christian	
May, Patrick	110
Maybank, Philip	122
Mazzucato, Luca	
McDougal, Robert	
McKinnon, Michael	
Mediano, Pedro A. M	
Meffin, Hamish	
Meier, Karlheinz 107, ⁻	120
Memmesheimer, Raoul-Martin	
Meng, John	
Menon, Shakti N	
Mesa, Natalia	
Metzner, Christoph	
Migliore, Michele	
Mihalas, Stefan35, 83, 91, 96, 106, 110, 117,	
Miki, Shuntaro	
Miki, Tomohiro	
Miko, Rebecca	
Millman, Daniel30, 56, ⁻	106

Mimica, Bartul	
Mirzakhalili, Ehsan	<mark>92</mark>
Moeller, Moritz	
Molkov, Yaroslav	
Monfared, Omid	94
Mongillo, Gianluigi	
Montero, Aaron	
Moolchand, Prannath	
Moore, Christopher	
Moore, Michael	
Moritz, Chet	
Morrison, Abigail	
Mukta, Kamrun	
Muller, Eilif	
Muller, Eric	
Muller, Lyle	
Muller, Paul	
Munro Krull, Erin	
Muresan, Raul	
Muscinelli, Samuel	
Mustari, Michael J	

Ν

Næss, Solveig	
Nachbauer, Daniel	
Nagasawa, Sarah	90
Najman, Fernando	
Namima, Tomoyuki	
Nandi, Anirban	
Nanduri, Devyani	
Nawrot, Martin Paul	
Naze, Sebastien	
Neftci, Emre	
Nesic, Dragan	
Ness, Torbjørn V	97, 116, 119
Newman-Tancredi, Adrian	
Newton, Adam J. H	
Newton, Taylor	32, 67, 94
Neymotin, Samuel	
Ng, Lydia	
Nolte, Max	. 32, 67, 94, 95
Novelli, Leonardo	
Novikov, Nikita	
Nowotny, Thomas	100, 119
Nykamp, Duane	94

0

O'Reilly, Christian114	
Ocker, Gabriel	
Oganian, Yulia113	
Ogura, Motohiro 107	
Oh, Jihong101	
Oh, Jinyoung93	
Oie, Kelvin110, 111	
Ojemann, Jeffrey G 103	
Olcese, Riccardo 113	
Olivares, Erick 111	
Oliver, Michael	6
Ollerenshaw, Doug110)

Olsen, Shawn	94, 106, 110, 113, 115
Ombao, Hernando	
Oprea, Lawrence	
Oprisan, Sorinel	
Oswood, Mark	

Ρ

Paik, Se-Bum	114
Pala, Aurélie	97
Palmer, Stephanie	89
Pantazis, Antonios	113
Park, Hae-Jeong	98
Park, Jihoon	107
Park, Youngjin	
Pascucci, David	
Pasupathy, Anitha	
Patel, Atit	
Pathak, Anand	
Pauli, Robin	
Paulk, Angelique	
Paunonen, Lassi	
Pawelzik, Klaus	
Pearl, Phillip	
Pena, Rodrigo F. O	
Peng, Hanchuan	102
Perez Nieves, Nicolas	
Perin, Rodrigo	
Peters, Megan	
Petrou, Steven	
Peyser, Alexander	
Pham, Tuan	
Philippides, Andrew O.	
Phillips, John	
Phillips, Ryan	
Phyo, Ngwe Sin	
Pickett, Ashley	
Plomp, Gijs	
Pollonini, Luca	
Polosecki, Pablo	
Pothmann, Leonie	
Povolotskiy, Arseny	
Powell, Sean.	
Pozzorini, Christian	
Prescott, Steve	
Priesemann, Viola	
Prilutsky, Boris	
Prinz, Astrid	
Proix, Timothée	
Purdy, Scott	
Pyle, Ryan	112

Q

Qiu, Siwei	92
Quaglio, Pietro	95
Quintana, Adrian	121

R

Rössert, Christian A	32, 67, 95, 114
Rabinovich, Mikhail I	

Raghavan, Janaki116
Ramaswamy, Srikanth
Ranta, Radu
Rao, Rajesh
Rao, Rajesh P. N
Rapp, Hannes
Ratté, Stephanie118
Recanatesi, Stefano96
Reid, R Clay 30, 56, 106
Reimann, Michael
Reimers, Mark100
Remme, Michiel 102
Ren, Naixin
Renaud, Sylvie
Reyes-Sanchez, Manuel
Ribar, Luka
Richardson, Chad 120
Riecke, Hermann 102
Riehle, Alexa 116
Rieke, Fred
Riffell, Jeffrey
Rikhye, Rajeev
Rinzel, John
Rish, Irina
Robertson, Madeline105
Robinson, Peter 100, 110
Rodarie, Dimitri
Rodriguez, Facundo96
Rodriguez, Francisco B
Rokem, Ariel
Romani, Armando95
Romaro, Cecilia
Roque, Antônio C
Rosa, Epaminondas
Rose, Daniel
Rosenbaum, Robert 112
Ross, Matt118
Rostami, Sareh 107
Rotermund, David
Rounds, Emily L100
Rubchinsky, Leonid 101
Rubega, Maria
Rubin, Jonathan
Rutishauser, Ueli
Rybak, Ilya31, 59, 101
S

Safari, Mir Shahram	107
Saini, Nitin	109
Samadani, Uzma	120
Samejima, Soshi	93
Sarma, Sridevi	117
Saudargiene, Ausra	104
Schünemann, Maik	108
Scheler, Gabriele	97
Shemmel, Johannes	120
Schmidt, Maximilian	113
Schmitt, Sebastian	107

Schmuker, Michael		120
Schumann, Martin		
Schwalger, Tilo		
Schwarzer, Max		
Sederberg, Audrey		
Seeman, Stephanie		
Segev, Idan		
Seidenstein, Alexandra H		
Sejnowski, Terrence		
Seki, Soju		
Senk, Johanna		
Sepulchre, Rodolphe		
Shang, Jiaqi		
Shea-Brown, Eric 29, 30,	52, 56, 88, 96, 113, ⁻	117
Shen, Kelly		113
Shen, Li		101
Shepherd, Gordon		121
Sherfey, Jason		
Shevtsova, Natalia		
Shi, Jianghong		
Shi, Ying		
Shifman, Aaron Regan		
Shillcock, Julian		
Shimoura, Renan O		
Shin, Hyeyoung		
Shlizerman, Eli		
Siegle, Joshua		
Singh, Matthew		
Sinha, Ankur	•••••••••••••••••••••••••••••••••••••••	120
Sinha, Sitabhra	······	116
Siu, Ricardo	•••••••••••••••••••••••••••••••••••••••	111
Sivagnanam, Subhashini		120
Skaar, Jan-Eirik W		
Skinner, Frances		66
Smith, Gordon	-	
Smith, Jeffrey		
Snyder, Abigail		
Sokolov, Yury	31	60
Solbrå, Andreas		
Song, Hanbing		
Song, Min		
Songco Aguas, Adree		
Sorensen, Larry B		
Sorensen, Staci		
Sornborger, Andrew		
Sredniawa, Wladyslaw		
Stöckel, David		
Stamoulis, Caterina		
Stanley, Garrett		
Stasik, Alexander J		
Stein, Wolfgang		
Stepanyants, Armen		
Stern, Merav		
Steuber, Volker		
Stevenson, Ian H		
Steyn-Ross, D Alistair		
Steyn-Ross, Moira L		
Sting, Louisa		
o		

Stoelzel, Carl
Stone, Emily
Stratton, Peter 106
Stringer, Simon 116
Stuerner, Tomke
Sugi, Adam 113
Sumbul, Uygar120
Sunkin, Susan 102
Suter, Benjamin A 121
Swadlow, Harvey99

Т

т		
Tabas, Alejandro	1	03
Tahayori, Bahman		94
Taheri, Marsa		
Tam, Nicoladie	104, 1	08
Tang, Rongxiang	1	12
Tang, Yi-Yuan		
Tang, Yizhe		96
Tani, Ryo	1	15
Tank, David W	<mark>29</mark> ,	46
Tao, Louis		
Tavosanis, Gaia		
Tennøe, Simen		
Tepper, Ángeles		
Teppola, Heidi		
Terashima, Hiroki		
Terman, David H		
Tetzlaff, Tom		
Thier, Peter		
Thivierge, Jean-Philippe		
Thorpe, Maxwell		
Tian, Kun		
Timme, Nicholas		
Ting, Jonathan		
Tipnis, Uttara		
Todorov, Dmitrii		
Tomen, Nergis		
Tompa, Tams		
Torre, Emiliano		
Tosi, Zoʻ		
Tourbier, Sebastien		
Toyoizumi, Taro		
Trägenap, Sigrid		
Tran, Harry		
Tripp, Bryan		
Truccolo, Wilson		
Truwit, Charles		
Tyvaert, Louise	1	09

U

U	
Ukani, Nikul	122
Urban, Nathan	108
Usui, Ayaka	110

Valley, Matt	100
van Albada, Sacha J	28, 39, 113

۷

van den Brink, Jonas90
van Elburg, Ronald
van Geit, Werner Alfons Hilda
van Pottelbergh, Tomas 112
Vargas, Alex
Vargas-Irwin, Carlos
Varney, Mark89
Varona, Pablo
Vasilaki, Eleni100
Vattikuti, Shashaank 115
Vellmer, Sebastian
Venkatesh, Shivani 120
Venugopal, Sharmila113
Verstynen, Timothy 119
Vich, Catalina119
Villafranca D'az, Jafet
Voges, Nicole
Voina, Doris96
Vokral, Jan100
Von Kriegstein, Katharina 103
Von Papen, Michael116
Vulliemoz, Serge109

W

Wu, Yue	88
Wybo, Willem	32, 67

Х

Xiao, Sa	. 88
Xiao, Zhuocheng104,	123
Xie, Linhui	101

Υ

Yamada, Yasunori	.122
Yamakou, Marius	102
Yan, Jingwen	101
Yano, Shiro	115
Yao, Zhaojie	91
Yao, Zizhen 28	3, 42
Yaqoob, Muhammad	92
Yazdan-Shahmorad, Azadeh	91
Yegenoglu, Alper	95
Yeh, Chung-Heng	1, 48
Yger, Pierre	.110
Yi, Jane	.114
Yoshimoto, Kenneth	.108
Youngstrom, Isaac	89
Yu, Alfred110,	111

Ζ

Zaghloul, Kareem	
Zapotocky, Martin	
Zavitz, Daniel	
Zeng, Hongkui	102, 106, 117
Zhang, Chi	
Zhang, Danke	
Zhang, Jiwei	
Zhang, Xiaohui	122
Zhang, Zhong	
Zhelambayeva, Altyn	
Zheng, He	
Zheng, Ying	122
Zhou, Yiyin	122
Zhuang, Jun	
Zirkle, Joel	
Zouridakis, George	
Zurowski, Bartosz	120