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Organization for Computational Neurosciences
(OCNS)

OCNS - The Organization 2018 Board of Directors

• President: Astrid Prinz (Emory University, Atlanta, USA).

• Vice-President and Secretary: Sharon Crook (Arizona State University, Tempe, USA).

• Past President: Erik De Schutter (OIST, Japan & University Antwerp, Belgium).

• Treasurer: Volker Steuber (University Hertfordshire, UK).

• Past Treasurer: Victoria Booth (University Michigan, Ann Arbor, USA).

• CNS Program Chair: Thomas Nowotny (University of Sussex, UK).

• CNS Publications Chair: Ingo Bojak (University of Reading, UK).

• CNS Sponsorship Chair: Michele Giugliano (University of Antwerp, Belgium).

• CNS Sponsorship Chair Assistant: William Lytton (SUNY Downstate, Brooklyn, USA).

• OCNS Website Administrator: Pierre Yger (Institut de la Vision, Paris, France).

• Local Org. Committee Rep. CNS 2017: Daniele Marinazzo (Ghent University, Belgium).

• Local Org. Committee Rep. CNS 2018: Eric Shea-Brown (University of Washington, Seattle, USA).

• Local Org. Committee Rep. CNS 2019: Alex Roxin (Centre de Recerca Matemàtica, Barcelona, Spain).

• CNS Tutorials Organizer: Hermann Cuntz (ESI and FIAS, Franfurt/Main, Germany).

• CNS Workshop Organizer: Martin Zapotocky (Czech Academy of Sciences, Prague, Czech Republic).

• Social Media Chair: Joanna Jedrzejewska-Szmek (University of Warsaw, Warsaw, Poland).

• CNS Registration Organizer: Leonid Rubchinsky (Indiana University, Indianapolis, USA).

• CNS Travel Awards: Taro Toyoizumi (RIKEN Brain Science Institute, Saitama, Japan).

• OCNS Member Approval: Maurice Chacron (McGill University, Montreal, Canada).
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2018 Program Committee

• CNS Program Chair: Thomas Nowotny (University of Sussex, UK).

• CNS Publication Chair: Ingo Bojak (University of Reading, UK).

• Sacha van Albada (Research Centre Jülich, Germany).

• Maxim Bazhenov (University of California San Diego, USA).

• Cliff Kerr (University of Sydney, Australia).

• Tomoki Fukai (Riken University, Japan).

• Dieter Jaeger (Emory University, Atlanta, USA).

• Arvind Kumar (KTH Royal Institute of Technology, Stockholm, Sweden).

• Sukbin Lim (NYU Shanghai, China).

• Christoph Metzner (University of Hertfordshire, UK).

• Yaroslav Molkov (Indiana University – Purdue University, Indianapolis, USA).

• Tatyana Sharpee (Salk Institute, San Diego, USA).

• Tatjana Tchumatchenko (Max Planck Institute for Brain Research, Frankfurt/Main, Germany).

2018 Local Organizers

• Christof Koch (Allen Institute for Brain Science, Seattle, USA).

• Adrienne Fairhall (University of Washington, Seattle, USA).

• Eric Shea-Brown (University of Washington, Seattle, USA).

Fundraising

OCNS, Inc is a US non-profit, 501(c)(3) serving organization supporting the Computational Neuroscience com-
munity internationally. We seek sponsorship from corporate and philantropic organizations for support of student
travel and registration to the annual meeting, student awards and hosting of topical workshops. We can also host
booth presentations from companies and book houses. For further information on how you can contribute please
email http://sponsorship@cnsorg.org.

8



Timetable

Timetable

9



General Information

General Information Meeting venues

Meeting venues

Allen Institute
615 Westlake Ave N, Seattle, WA,
98109

University of Washington Husky
Union Building
4001 E Stevens Way NE, Seattle,
WA 98195

The Allen Institute and University of Washington are thrilled to be hosting CNS 2018 in Seattle.
Founded in 2003 by Paul G. Allen, the Allen Institute has expanded from its initial pursuit of understanding the
brain to encompass an investigation of the inner workings of cells and the funding of transformative scientific
ideas around the world. The Allen Institute for Brain Science is a division of the Allen Institute and is dedicated
to accelerating the understanding of how the human brain works in health and disease. Using a big science
approach, the Allen Institute generates useful public resources used by researchers and organizations around
the globe, drives technological and analytical advances, and discovers fundamental brain properties through in-
tegration of experiments, modeling and theory. The Allen Institute for Brain Science’s data and tools are publicly
available online at brain-map.org.

The University of Washington is a national leader in computational neuroscience, with award-winning research
underway across the full spectrum of scales, mechanisms, and functions of the brain. Topics range from ion chan-
nel stochasticity in auditory processing to insect flight control to human/computer interfaces. Faculty members’
interests span many areas of theory, computation and data analysis and interact extensively with colleagues
in quantitative experimentation and imaging. The new UW Computational Neuroscience Center capitalizes on
this strength, along with the UW Institute for Neuroengineering (UWIN) and the Center for Sensorimotor Neural
Engineering (CSNE).
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Tutorials and workshops locations:

Tutorials and workshops will be held at the Allen Institute, University of Washington Medicine - South Lake
Union (UW Medicine SLU), and the Museum of History and Industry (MOHAI). Check in at the Allen Institute
lobby before proceeding to all workshops and tutorials. Allow 10 minutes to walk from the Allen Institute to tuto-
rial/workshop rooms in both UW Medicine SLU and MOHAI.

Ask at check in for the room number for each workshop and tutorial.

Please bring your conference badge to tutorials, workshops, and all other conference events.
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Getting to the conference venues

Getting to the conference

From Sea-Tac Airport:

From the airport (SeaTac), the lowest cost and often fastest method of getting to Downtown or UW area is to
take the light rail to downtown or to the UW station. Please check where your hotel is relative to the stations so
you know your walk distance or if you need to call an Uber or Lyft. From the UW station you can walk a short
distance (15-20 minutes) to the dorms or 25 minutes to the recommended hotels in the University District. The
bus lines number 44 or 45 from the UW station will take you to the 45th and Roosevelt area of the University
District, where the conference hotels are located.

The cost to ride light rail from the airport to either stations runs from $2.50 to $4 per person depending on how
far you travel. A taxi or Uber from the airport can run from $55 to $75 per ride depending on traffic, and may take
an hour during peak travel times.

Shuttle Express is a 24 hour service. Shuttle Express does pick ups and drop offs 24 hours a day. We highly
suggest reservations from the airport; however, walk ups are taken. Rates are from $19.00 one way, per person.

TIP: There may be a wait, both with or without a reservation, at the airport as they wait to ensure they have
enough people on board to justify making the trip to Seattle. Sometimes this can take a while, however, some-
times there is little to no wait depending on the time of day.

You may either book online www.shuttleexpress.com with Shuttle Express or call them at 425-981-7000.

Between the University of Washington and the Allen Institute:

There is a direct bus line that runs between University of Washington and Allen Institute (metro bus # 70). The
bus ride takes about 15-20 minutes and costs $2.75 a ride. You must have exact change; no change is made on
the bus. You may also buy a transit card (Orca Card) at any light rail station vending machine. It can be loaded
with cash or a credit card. You can plan your bus trip here https://tripplanner.kingcounty.gov/hiwire with departure
and arrival times.

Parking is very limited at both the Allen Institute and University of Washington, and it is recommended to not
drive if possible. For parking destinations near the Allen Institute, see:
https://seattle.bestparking.com/neighborhoods/south-lake-union-parking.
The best parking garage at the University of Washington is the Padelford garage, located off Pend Orielle Rd.
Pay station parking is located on the lower levels.

The tutorials and workshops will be held at the Allen Institute, UW Medicine South Lake Union, and MOHAI.
After checking in at the Allen Institute, you will be directed two blocks to UW Medicine South Lake Union or one
block to MOHAI.

Seattle also offers two bike share companies with bikes located in various parts of the city, it is usually very easy
to find an available bike. You can find the bike share information below: download their applications to create an
account used to pay for bike time and find bikes.
Lime bikes https://www.limebike.com/
Ofo bikes http://ofo.com/
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Welcome, first keynote, and reception:

The Welcome remarks and first keynote will be held on Friday July 13 at 5pm at the Allen Institute auditorium.
Please plan to arrive early if you wish to ensure a seat in the auditorium. Overflow seating in rooms with a
live video stream of the presentation will be located in other rooms in the Allen Institute.

The welcome reception will follow the keynote and will take place at MOHAI, located just one block from the Allen
Institute. Attendees who do not attend the keynote may check in at MOHAI. Attendees who attended tutorials
and/or the keynote should be sure to bring their conference badges.
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Information for poster presentations:

Information for poster presentations
The poster presentations will be held in the HUB Ballroom, located one floor above the main meeting room.
Poster boards will be numbered. Pins will be provided.

Poster sessions will be held on July 14 and 15 at 3:20-7pm. Presenters are expected to be at the session until
at least 6pm. The hall will be available starting at 1pm on both days for presenters to set up posters.

Posters should be removed promptly at the end of the poster session on both days. Presenters who leave before
7pm should take their posters with them at that time.

Please leave pins on poster boards at the end of the session.

Posters that are not removed by the end of the day of the session will be discarded. The organizers are not
responsible for loss or damage to posters not removed by their owners.
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Registration and locations

Registration and locations
On the days of the main meeting, registration will be held in the University of Washington Husky Union Building
(HUB) at the Lyceum, the primary meeting room.

On the days of the tutorials and workshops, registration will be held in the lobby of the Allen Institute, including
for tutorials and workshops being held in neighboring buildings.

For those not attending the tutorials or opening keynote, registration at the Welcome Reception will also be avail-
able.

Registration hours:

Friday July 13, at the Allen Institute: 8 am to 5 pm
Friday July 13, at the Welcome Reception at MOHAI: 6 pm to 8 pm
Saturday July 14, at the UW HUB Lyceum: 8 am to 4 pm
Sunday July 15, at the UW HUB Lyceum: 8 am to 4 pm
Monday July 16, at the UW HUB Lyceum: 8 am to 4 pm
Tuesday July 17, at the Allen Institute: 8 am to 4 pm
Wednesday July 18, at the Allen Institute: 8 am to 4 pm

Please bring your conference badge to all conference events, including offsite social events.
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Local information

Local InformationGood to Know
Travel tips for Seattle are available at https://www.visitseattle.org/.

Official Language
The official language of the meeting is English. Interpreting is not provided.

Insurance
The organizers do not accept responsibility for individual medical, travel or personal insurance. All participants
are advised to take out their own personal insurance before traveling to Seattle.

Currency & Banking
Exchange of foreign currency is available at airports and at most hotels and banks throughout the city. Interna-
tional credit cards are accepted for payments in hotels, restaurants and shops. An increasing number of locations,
especially small restaurants and food carts, are cashless.

Electricity
The US uses a 120 volt 60 Hz system. Travelers from outside of North America will likely require socket and/or
voltage converters.

Shopping
Most stores in Seattle are open from 8am to 8pm. Some stores may open later on Sundays. A large shopping
center called University Village with a grocery store, drugstore, and many other shops and restaurants is located
approximately 0.5mi east of the main meeting location on the UW campus.

Time Zone
Seattle is on Pacific Daylight Time in July (GMT-7). Seattle is the northernmost city of over 1 million people in the
United States, so days are long in summer. During the meeting, sunrise will be around 5:30am and sunset will
be around 9pm.

Tipping
Gratuities are usually not automatically included in the bill in most bars and restaurants, but especially for groups
larger than 6, an automatic gratuity may be applied. Standard tip is 18-20%.
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Get around by public transportation
Seattle has an extensive bus network and a light rail that travels directly from the airport to downtown and the
University of Washington. Bus fares can be paid in cash with exact change ($2.75, no matter what bus route or
distance traveled) or with an Orca Card transit pass, which can be bought and loaded with fares at any light rail
station. You can plan your bus trip here https://tripplanner.kingcounty.gov/hiwire with departure and arrival times.
You can transfer between bus routes without paying a second fare within 2 hours of boarding the first bus.

By bike
Seattle also offers two bike share companies with bikes located in various parts of the city, it is usually very easy
to find an available bike. You can find the bike share information below: download their applications to create an
account used to pay for bike time and find bikes.
Lime bikes https://www.limebike.com/
Ofo bikes http://ofo.com/

By car
Parking is limited at both the Allen Institute and the University of Washington. For the Allen Institute and surround-
ing activities, see https://seattle.bestparking.com/neighborhoods/south-lake-union-parking for parking locations.
At the University of Washington, proceed to the Padelford parking garage, accessed from Pend Orielle Rd, and
use the pay stations on the lower levels as directed.

On foot
Many fun activities, interesting sights, and local restaurants are within walking distance of all conference venues.
Recommended restaurants for each primary location are listed below.
The University District hotels are within walking distance of the main meeting location at the Husky Union Build-
ing. Ask at the hotel desk for a campus and neighborhood map.

Weather
July is the warmest month in Seattle. The average high is around 75F/24C and low around 55F/12C. Rain is
relatively rare in July, but be prepared for surprise storms rolling in from Puget Sound.

Free Wifi
Wifi is provided at the meeting venues. The University of Washington main campus (HUB) and UW Medicine
South Lake Union will have the same wifi login information. The Allen Institute has its own separate wifi. See the
registration desk for each venue for the login information.

Car Services
Taxis are available, but they can be quite expensive and congestion between the University District hotels and
the Allen Institute is severe. Traveling by car during rush hour is not recommended.

Uber and Lyft are available throughout the city. Traveling by public transportation or on foot in the University
District, especially around University Avenue between 43rd and 50th, is not recommended after dark.
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Gala Dinner

Gala Dinner

Date: Monday, July 16, 2018
Time: 6:30pm PM
Venue: Seattle Yacht Club, 1807 E Hamlin St, Seattle, WA 98112 https://www.seattleyachtclub.org/
Recommended dress code: Casual
How to get there: The best way to get to the Seattle Yacht Club from the main meeting venue at the University
of Washington Husky Union Building is on foot or by bike. The distance is 1 mile and is entirely downhill or flat.
For those who choose to bike, bike shares are generally abundant on campus. Conference staff will lead walking
groups from the main meeting location at the HUB to the Yacht Club, departing from the registration desk be-
tween 5:30 and 6:00 pm.

The bike and pedestrian route travels through part of the University of Washington campus, down the Rainier
Vista quad with panorama views of the Cascade Mountains and especially Mount Rainier, across the historic
Montlake Bridge, and into the Montlake neighborhood.

There are no public transit routes that travel directly between those locations. Montlake Avenue and the Montlake
Bridge are generally extremely congested at that time of day, so car share services will be time consuming.
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CNS Party

CNS Party

Date: Sunday, July 15, 2018
Time: 8:00 PM
Venue: Fremont Foundry, 154 N 35th St, Seattle, WA 98103
Recommended dress code: Casual

The CNS Party will be held at the Fremont Foundry. Originally an artists’ metal-working foundry, it was converted
to an event space for parties, weddings, and other events.

Fremont is about 3 miles from the University of Washington. It can be reached from the University of Washington
Husky Union Building and from the University District hotel area via the #31 or #32 bus lines (approximately 30
minutes travel), by carshare services (approximately 15 minutes travel), or by bikeshare services (20 minutes
travel, all flat or downhill) via a protected mixed-use bike pedestrian trail. Pedestrians can also use the mixed-use
trail. Plan to eat dinner before the party, as only light refreshments and drinks will be provided. Recommended
restaurants for dinner near the party are listed below.
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Restaurants

Restaurants
Reservations are recommended for groups larger than 6 at most restaurants in Seattle. Most restaurants in Seat-
tle have vegetarian options.

Restaurants near the University of Washington in the University Village shopping area:

Ba Bar
Vietnamese
$$
http://babarseattle.com/university-village/

Elemental pizza
Wood-fired pizza
$$
https://elementalpizza.com/

Evergreens
Salads
$
http://evergreens.com/

Rachel’s Ginger Beer with Ma’ono Fried Chicken
Ginger beer and cocktails, fried chicken
$
https://rachelsgingerbeer.com/pages/university-village

Eureka
Burgers and pub food, extensive tap list
$$
http://eurekarestaurantgroup.com/eat/

Molly Moon’s
Ice cream
$
http://www.mollymoon.com/

For a full list of University Village restaurants, see https://uvillage.com/directory/

Selected restaurants near the University of Washington in the the University District hotel area:

U:Don
Udon and tempura bar
$
https://freshudon.com/

Chili’s
South Indian
$ lunch, $$ dinner
http://chilissouthindianrestaurant.com/

Big Time Brewery
Pub food, beer brewed on site
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$$
http://bigtimebrewery.com/

Agua Verde
Homestyle Mexican, view of lake
$ lunch, $$ dinner
http://aguaverde.com/cafe/

Cafe Allegro
Coffee
$
https://seattleallegro.com/

Cafe Solstice
Coffee, sandwiches, beer (evening)
$
https://www.cafesolsticeseattle.com/u-district/

For more recommendations, see http://www.cnsorg.org/cns-2018-local-info and scroll down to the map.

Selected restaurants near the Allen Institute, UW Medicine South Lake Union, and MOHAI:

Uptown Espresso
Coffee
$

100 Pound Clam
Seafood
$$
http://www.100poundclam.com/

El Chupacabra
Mexican, view of lake
$ to $$
http://www.elchupacabraseattle.com/menu/food/

Ballard Pizza Co
Pizza
$$
http://www.ballardpizzacompany.com/

Portage Bay Cafe
Brunch
$$
https://www.portagebaycafe.com/

Many food trucks are located around South Lake Union. Head south (away from the lake) on any road and you
will probably find one!

Note that the Allen Institute Cafe is accessible to employees only.

For more recommendations, see http://www.cnsorg.org/cns-2018-local-info and scroll down to the map.

Selected restaurants near the Fremont Foundry:

Agrodolce
Southern Italian
$$
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http://www.mariahinesrestaurants.com/restaurants/agrodolce/?activeTab=0

The Red Door
Gastropub
$$
http://reddoorseattle.com/

Rock Creek Seafood and Spirits
Seafood, modern NW
$$$
http://rockcreekseattle.com/

Dumpling Tzar
Dumplings
$
http://dumplingtzar.com/

Cafe Turko
Turkish
$$
http://cafe-turko.com/

Manolin
Seafood
$$ http://www.manolinseattle.com/menu-2/
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Sights

Sights
The CNS locations circle Lake Union, located in the center of Seattle. Getting around the conference provides
an opportunity to travel the city and see some sights!

The top tourist destination in Seattle is Pike Place Market, which is home to many small restaurants, food
stands, shops, artisans, and the famous fish-tossing seafood market. Weekday mornings are likely to be the
least crowded.

Other popular destinations include the Space Needle, located in Seattle Center, Kerry Park (the "Frasier" view),
boating on Lake Union, and central neighborhoods including Capitol Hill, Fremont, Wallingford, Ballard, the Uni-
versity District, and more.
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The University District farmer’s market is about half a mile from campus and is held from 9-1 on Saturday morn-
ings. It is the largest farmer’s market in the state and has an abundance of locally grown produce, small artisan
food companies, and ready-to-eat lunch bites.

See more recommendations for touring and sights:
General top destinations: https://www.visitseattle.org/ or https://www.buzzfeed.com/ariannaodell
Near the University of Washington: https://www.visitseattle.org/neighborhoods/university-district/
Near the Allen Institute: https://www.google.com/search?q=south+lake+union&ie=utf-8&oe=utf-8&client=firefox-b-1-ab
Nearest the Fremont Foundry: https://fremont.com/
Near the Fremont Foundry: https://www.fodors.com/world/north-america/usa/washington/seattle/neighborhoods/ballard
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Tutorials

Tutorials

T1 Allen Institute Brain Observatory and Brain Modeling Toolkit tutorial

Allen Institute Training Room, Friday July 13, 09:00 - 16:30

Yazan Billeh, Allen Institute, USA

Sergey Gratiy, Allen Institute, USA

Saskia E. J. de Vries, Allen Institute, USA

T2 Multiscale modeling from molecular level to large network level

Allen Institute Auditorium, Friday July 13, 09:00 - 16:30

Salvador Dura-Bernal, SUNY Downstate, USA

Robert McDougal, Yale University, USA

William Lytton, SUNY Downstate, USA

T3 Simulation of large-scale neural networks

UW Medicine SLU Brotman Auditorium, Friday July 13, 09:00 - 16:30

Sacha J. van Albada, Julich Research Centre and JARA, Germany

Philipp Weidel, Julich Research Centre and JARA, Germany

T4 Neuroinformatics resources for computational modelers

Allen Institute 288/289, Friday July 13, 09:00 - 12:00

Padraig Gleeson, University College London, UK

T5 Modeling and analysis of extracellular potentials

Allen Institute 286/287, Friday July 13, 09:00 - 12:00

Gaute Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway

Espen Hagen, Dept. of Physics, University of Oslo, Norway

T6 Single cell RNA-seq analysis for transcriptomic type characterization

Allen Institute 286/287, Friday July 13, 13:30 - 16:30

Zizhen Yao, Allen Institute, USA

Lucas Graybuck, Allen Institute, USA

Room assignments are subject to change. Please check with registration in the Allen Institute lobby for the final
room assignments for tutorials.
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Main Meeting

Main Meeting Friday July 13

8:00 – 17:00 Registration (Allen Institute)

9:00 – 16:30 Tutorials (Allen Institute & nearby UW Medicine at South Lake Union)

17:00 – 17:10 Welcome and Announcements (Allen Institute)

17.10 – 18:10 K1 Keynote 1:

Probabilistic models of sensorimotor control and decision making

Daniel Wolpert

18:10 – 18:30 Appreciation of Wilfrid Rall

18:30 – 20:30 Welcome Reception/Registration (nearby Museum of History and Industry (MO-
HAI))

Saturday July 14

8:00 – 9:00 Registration (University of Washington, Husky Union Building Lyceum, First Floor)

9:00 – 9:10 Announcements

9:10 – 10:10 K2 Keynote 2:

The Bayesian brain: from predictive coding to decision making
Rajesh Rao

10:10 – 10:40 Break

Oral Session I: Visual System

10:40 – 11:20 F1 Featured Oral 1:

Predictive computations in the primary visual cortex

Jan Homann⋆, Michael Berry, Sue-Ann Koay, Alistair M. Glidden, and David W. Tank

11:20 – 11:40 O1 Generative model of visual cortex with short- and long-range recurrent interactions
Federica Cappareli⋆, Klaus Pawelzik, David Rotermund, and Udo Ernst

11:40 – 12:00 O2 Info in a bottleneck: exploring the compression of visual information in the retina
Gabrielle Gutierrez⋆, Eric Shea-Brown, and Fred Rieke

12:00 – 13:30 Lunch Break
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Oral Session II: Large-scale Network Dynamics

13:30 – 13:50 O3 Structural and dynamical properties of local cortical networks result from robust
associative learning
Danke Zhang, Chi Zhang, and Armen Stepanyants⋆

13:50 – 14:10 O4 Reduced models of an attractor neural network’s response to conflicting external
inputs
Kathryn Hedrick⋆

14:10 – 14:30 O5 Topologies of repetitive functional network motifs vary dynamically with age in
the developing human brain: Evidence from very high-dimensional invasive brain
signals
Caterina Stamoulis⋆, Phillip Pearl

14:30 – 14:50 O6 Revealing principles of cortical computation using the Allen Brain Observatory: A

large, standardized calcium imaging dataset from the mouse visual cortex

Michael A. Buice, Saskia E. J. de Vries⋆, Gabriel Ocker, Michael Oliver, Peter Ledochow-
itsch, Daniel Millman, Eric Shea-Brown, Christof Koch, Jianghong Shi, and R Clay Reid

14:50 – 15:20 Break

15:20 – 19:00 Poster Session 1 (Posters 1 - 145) (University of Washington, Husky Union Building
North Ballroom, Second Floor (Drinks and Snacks Provided))

Sunday July 15

8:00 – 9:00 Registration (University of Washington, Husky Union Building Lyceum, First Floor)

9:00 – 9:10 Announcements

9:10 – 10:10 K3 Keynote 3:

Coordination, modulation and functional implications of brain rhythms
Nancy Kopell

10:10 – 10:40 Break

Oral Session III: Brain Dynamics in Health and Disease

10:40 – 11:20 F2 Featured Oral 2:

Response to deep brain stimulation in essential tremor: predictions beyond noisy

data with a Wilson-Cowan model

Benoit Duchet⋆, Gihan Weerasinghe, Christian Bick, Hayriye Cagnan, and Rafal Bogacz

11:20 – 11:40 O7 Characterization of the brain’s dynamical repertoire in the psychedelic state

Louis-David Lord⋆, Paul Expert, Robin Carhart-Harris, Morten Kringelbach, and Joana
Cabral

11:40 – 12:00 O8 Understanding the bispectrum as a measure of cross-frequency coupling

Christopher Kovach⋆
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12:00 – 13:30 Lunch Break

Oral Session IV: Oscillations and Waves

13:30 – 13:50 O9 Spinal interneurons and locomotor speed and gait control in quadrupeds

Ilya Rybak⋆, Simon Danner, and Natalia Shevtsova

13:50 – 14:10 O10 A simplified model of network bursts in the pre-Botzinger complex

Yury Sokolov⋆, Jonathan Rubin

14:10 – 14:30 O11 Traveling waves in single cortical regions: mechanisms and emerging computa-

tional principles

Lyle Muller⋆, Terrence Sejnowski

14:30 – 14:50 O12 Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocam-

pus

Daniel Levenstein⋆, György Buzáki, and John Rinzel

14:50 – 15:20 Break

15:20 – 19:00 Poster Session II (Posters 146 - 287) (University of Washington, Husky Union Build-
ing North Ballroom, Second Floor (Drinks and Snacks Provided))

19:00 – 20:00 Break (Time Allocated for Dinner and Travel to Party)

20:00 – 23:00 CNS Party (Fremont Foundry, 154 North 35th Streeet, Seattle)

Monday July 16

8:00 – 9:00 Registration (University of Washington, Husky Union Building Lyceum, First Floor)

9:00 – 9:10 Announcements

9:10 – 10:10 K4 Keynote 4:

Differential resilience to perturbation of circuits with similar performance

Eve Marder

10:10 – 10:40 Break

Oral Session V: Insect Sensory Systems

10:40 – 11:20 F3 Featured Oral 3:

A molecular odorant transduction model and combinatorial encoding in the

Drosophila Antennae

Aurel A. Lazar, Chung-Heng Yeh⋆

11:20 – 11:40 O13 Biological mechanisms for learning: A computational model of olfactory learning

in the Manduca sexta moth

Charles Delahunt⋆, Jeffrey Riffell, and J. Nathan Kutz
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11:40 – 12:00 O14 Modeling of TRP channel mediated noxious cold sensation in Drosophila sensory

neurons

Natalia Maksymchuk⋆, Atit Patel, Nathaniel Himmel, Daniel Cox, and Gennady Cymba-
lyuk

12:00 – 13:30 Lunch Break

13:30 – 14:20 OCNS Member Meeting (University of Washington, Husky Union Building Lyceum,
First Floor)

Oral Session VI: Hippocampus Models

14:20 – 14:40 O15 A geometric attractor mechanism for the self-organization of entorhinal grid mod-

ules

Louis Kang⋆, Vijay Balasubramanian

14:40 – 15:00 O16 Simulating in vivo context-dependent recruitment of CA1 hippocampal interneuron

specific 3 (IS3) interneurons

Alexandre Guet-McCreight⋆, Frances Skinner

15:00 – 15:20 Break

Oral Session VII: Advances in Neuronal Modeling

15:20 – 15:40 O17 Quantitative simplification of detailed microcircuit demonstrates the limitations to

common point-neuron assumptions

Christian A Rössert, Giuseppe Chindemi, Andrew Davison, Dimitri Rodarie, Nicolas
Perez Nieves, Christian Pozzorini, Csaba Eroe, James King, Taylor Newton, Max Nolte,
Srikanth Ramaswamy, Michael Reimann, Willem Wybo, Marc-Oliver Gewaltig, Wulfram
Gerstner, Henry Markram, Idan Segev, and Eilif Muller⋆

15:40 – 16:00 O18 A novel synaptic plasticity rule for detailed model neurons with realistic dendrites

Christian Ebner, Claudia Clopath, Peter Jedlicka⋆, and Hermann Cuntz

16:00 – 16:20 O19 Assisted construction of hybrid circuits: making easy the implementation and au-

tomation of interactions between living and model neurons

Manuel Reyes-Sanchez, Irene Elices Ocon⋆, Rodrigo Amaducci, Francisco B Rodriguez,
and Pablo Varona

16:20 – 16:40 O20 Deciphering the evolutionary route to the first neurons

Oltman de Wiljes⋆, Ronald van Elburg, and Fred Keijzer

16:40 – 17:00 O21 Community models as the ultimate objective (and success) of computational neu-

roscience: exempli gratia: The cerebellar Purkinje cell

James Bower⋆

17:00 – 18:30 Break (Time Allocated for Travel to Banquet)

18:30 – 21:00 CNS Banquet (Seattle Yacht Club, 1807 E Hamlin St., Seattle)
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Tuesday July 17 and Wednesday July 18

Workshops (Allen Institute & nearby MOHAI, UW Medicine at South Lake Union)

9:00 – 12:30 Workshop Morning Session

12:30 – 14:00 Break for Lunch

14:00 – 18:00 Workshop Afternoon Session
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Workshops

Workshops

W1 Methods of Information Theory in Computational Neuroscience

Allen Institute Auditorium, Tue July 17 and Wed July 18, 9:00 to 18:00

Joseph T. Lizier, University of Sydney

Viola Priesemann, Max Planck Institute for Dynamics and Self-organisation

Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University

Lubomir Kostal, Czech Academy of Sciences

Michael Wibral, Goethe University, Frankfurt

W2 Neuronal morphology and structure

Allen Institute 286/287, Tue July 17, 9:00 to 18:00

Alexander Bird, Ernst Strüngmann Institute and FIAS, Frankfurt

André Castro, Ernst Strüngmann Institute and FIAS, Frankfurt

Hermann Cuntz, Ernst Strüngmann Institute and FIAS, Frankfurt

W3 Bridging Spatial and Temporal Scales in Brain Connectomics

MOHAI - Microsoft Lakefront Pavilion, Tue July 17, 9:00 to 18:00

Katharina Glomb, Lausanne University Hospital

Joana Cabral, Oxford University

W4 Models for Perceiving and Learning Time Intervals and Rhythms

Allen Institute Training Room, Tue July 17, 9:00 to 18:00

Áine Byrne, New York University

John Rinzel, New York University

Amitabha Bose, New Jersey Institute of Technology

W5 Developing, Standardising, and Sharing Large Scale Network Simulations

Allen Institute 288/289, Tue July 17, 9:00 to 12:30

Padraig Gleeson, University College London

W6 Neuroscience Gateway and Large Scale Neural Systems Simulations and Tools

Allen Institute 288/289, Tue July 17, 14:00 to 18:00

Amit Majumdar, University of California San Diego

Subhashini Sivagnanam, University of California San Diego

Ted Carnevale, Yale University

W7 Dynamics of Rhythm Generation

UW Medicine SLU Brotman Auditorium, Tue July 17, 9:00 to 18:00

Gennady Cymbalyuk, Georgia State University
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W8 Insights Gained by Detailed Dendritic Modeling

Allen Institute 540 Lab, Wed July 18, 9:00 to 18:00

Dieter Jaeger, Emory University

Volker Steuber, University of Hertfordshire

W9 Integrative Theories of Cortical Function

Allen Institute Training Room, Wed July 18, 9:00 to 18:00

Hamish Meffin, The University of Melbourne

Stefan Mihalas, Allen Institute for Brain Science

Anthony Burkitt, The University of Melbourne

W10 How Does Learning Reshape the Dimensionality of Collective Network Activity?

UW Medicine SLU Brotman Auditorium, Wed July 18, 9:00 to 18:00

Rainer Engelken, Columbia University

Guillaume Lajoie, Université de Montréal

Merav Stern, University of Washington

W11 Towards New Models for Cognitive Flexibility

Allen Institute 288/289, Wed July 18, 9:00 to 18:00

Rajeev Rikhye, Massachusetts Institute of Technology

Room assignments are subject to change. Please visit registration at the Allen Institute for final room assign-
ments.
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Tutorials

Tutorials

T1 Allen Institute Brain Observatory and Brain Modeling Toolkit tutorial

Allen Institute Training Room, Friday July 13, 09:00 - 16:30

Yazan Billeh, Allen Institute, USA

Sergey Gratiy, Allen Institute, USA

Saskia E. J. de Vries, Allen Institute, USA

The first part of the tutorial will introduce the Allen Brain Observatory, an open dataset of neural activity recorded
in the visual cortex of the awake mouse. Collected using a standardized 2-photon calcium imaging pipeline,
this dataset contains recordings in response to a standard set of visual stimuli from 40,000 neurons in 200
experiments, spanning 6 cortical areas, 3 cortical layers, and 6 excitatory Cre-defined cell populations. This
tutorial will introduce the scientific context for this pipelined dataset, and demonstrate how to download and
access this data using the Allen Software Development Kits (Allen SDK). Working in a Python environment,
participants will be led through example analyses of both single cell and population level sensory coding.

The second part of the tutorial will introduce the Brain Modeling ToolKit (BMTK). BMTK is a Python-based
software package for building and simulating models of neuronal circuits. It supports simulations at four levels
of resolution (biophysically detailed, point-neuron, population statistics, and machine intelligence) by providing
wrappers to tools such as NEURON, NEST, diPDE, and TensorFlow. This tutorial will give an overview of BMTK
and work through two examples to demonstrate how to build and run networks at different levels of granularity.

This tutorial requires a basic level of Python proficiency and using Python scientific packages such as numpy
and pandas.

References
[1] Brain Observatory: observatory.brain-map.org/visualcoding

[2] BMTK: alleninstitute.github.io/bmtk/
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T2 Multiscale modeling from molecular level to large network level

Allen Institute Auditorium, Friday July 13, 09:00 - 16:30

Salvador Dura-Bernal, SUNY Downstate, USA

Robert McDougal, Yale University, USA

William Lytton, SUNY Downstate, USA

Understanding brain function requires characterizing the interactions occurring across many temporal and spa-
tial scales. Mechanistic multiscale modeling aims to organize and explore these interactions to determine how
dynamics at one scale alter or are associated with dynamics at other scales. In this way, multiscale models
provide insights into how changes at molecular and cellular levels, caused by development, learning, brain dis-
ease, drugs, or other factors, affect the dynamics of local networks and of brain areas. Large neuroscience
data-gathering projects throughout the world (e.g. US BRAIN, EU HBP, Allen Institute) are making use of these
tools – including the NEURON multiscale simulator – to better understand the vast amounts of information being
gathered using many different techniques at different scales [1, 2].

This tutorial will present recent multiscale modeling tool development in the NEURON simulator [3], with an
emphasis on reaction diffusion intracellular and extracellular modeling (chemophysiology complementing elec-
trophysiology) and simulation of large biophysically detailed networks. The morning session will introduce 1) the
basics of single cell modeling using the NEURON simulator and 2) NEURON’s Reaction-Diffusion (RxD) module
[4, 5]. RxD provides specification and simulation for molecular scale dynamics (genomics, proteomics, signaling
cascades and reaction dynamics) coupled with the electrophysiological dynamics of the cell membrane. The af-
ternoon session will introduce 1) basic network modeling in NEURON [6, 7], and 2) NetPyNE, a high-level Python
interface (programmatic and GUI-based) to NEURON that facilitates the development, parallel simulation, and
analysis of biological neuronal networks [8, 9, 10]. To finish, we will show an example of combining both tools to
explore the effects of molecular-level dynamics in a large network.

References

[1] Markram H et al. (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456-492

[2] Hawrylycz M, Anastassiou C, Arkhipov A, Berg J, Buice M, Cain N, Gouwens NW, Gratiy S, et al. (2016)
Inferring cortical function in the mouse visual system through large-scale systems neuroscience. PNAS,
113(27):7337-7344

[3] NEURON: https://neuron.yale.edu/

[4] McDougal R, Hines M, Lytton W (2013) Reaction-diffusion in the NEURON simulator. Front. Neuroinform.
7:28

[5] RxD: https://neuron.yale.edu/neuron/static/docs/rxd/index.html

[6] Migliore M, Cannia C, Lytton WW, Markram H and Hines ML (2006) Parallel network simulations with
NEURON. Journal of Computational Neuroscience 21:119-129

[7] Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, SchÃ¼rmann F, Hines ML (2016) Simulation
neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput.
28:2063-2090

[8] NetPyNE: www.netpyne.org

[9] NetPyNE-UI: https://github.com/MetaCell/NetPyNE-UI

[10] Dura-Bernal S, Neymotin SA, Suter BA, Shepherd G, Lytton WW (2018) Long-range inputs and H-current
regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv 201707
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T3 Simulation of large-scale neural networks

UW Medicine SLU Brotman Auditorium, Friday July 13, 09:00 - 16:30

Sacha J. van Albada, Jülich Research Centre and JARA, Germany

Philipp Weidel, Jülich Research Centre and JARA, Germany

This tutorial starts with an introduction to large-scale neuronal networks, giving examples of existing models and
identifying some challenges these networks pose for modeling and simulation. This is followed by an introduction
to the NEural Simulation Tool (NEST [1]), shedding light on its design principles, which address challenges
for large-scale simulations. An overview of the features of NEST is provided, also touching upon advanced
properties of neuronal networks like gap-junctions [2]. To familiarize participants with the basic usage of NEST,
some simple networks are programmed in hands-on exercises. Next, the tutorial explains how NEST enables
parallel simulations via both distributed and threaded computations. Threaded simulations are demonstrated on
a cortical microcircuit model [3]. Finally, the tutorial provides an introduction to the NEST Modeling Language
(NESTML [4]). In this final hands-on part of the tutorial, the participants learn how to create neuron models in
NEST using NESTML.

The tutorial does not assume any prior knowledge of NEST. However, it is recommended that participants install
NEST on their laptops beforehand [5]. Furthermore, it is recommended to have VirtualBox installed and to have
at least 4 GB of free disk space available.

References

[1] Kunkel S, Morrison A, Weidel P, Eppler JM, Sinha A, Schenck W, Plesser HE (2017). NEST 2.12.0. Zenodo.
http://doi.org/10.5281/zenodo.259534

[2] Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A and Diesmann M (2015) A unified framework
for spiking and gap-junction interactions in distributed neuronal network simulations Front. Neuroinform.
9:22

[3] Potjans TC, Diesmann M (2014) The cell-type specific cortical microcircuit: relating structure and activity in
a full-scale spiking network model. Cereb. Cortex. 24(3):785-806

[4] Plotnikov D, Rumpe B, Blundell I, Ippen T, Eppler JM and Morrison A (2016) NESTML: a modeling language
for spiking neurons. arXiv:1606.02882

[5] http://www.nest-simulator.org/installation/
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T4 Neuroinformatics resources for computational modelers

Allen Institute 288/289, Friday July 13, 09:00 - 12:00

Padraig Gleeson, University College London, UK

Neuroinformatics resources are becoming an essential part of computational investigations in neuroscience. A
movement towards making data and software freely available to the community means that more and more exper-
imental datasets, general purpose analysis tools and infrastructure for computational modelling and simulation
are available for computational neuroscientists to help build, constrain and validate their models.

This tutorial will give an overview of the range of neuroinformatics resources currently available to the community.
The first half will give a brief introduction to a number of these under the headings; Experimental datasets; Struc-
tured data from literature; Analysis tools; Simulation environments; Model sharing; Computing infrastructure;
Open source initiatives. The second half of the tutorial will involve hands on exercises where multiple resource
will be accessed, data transformed and analysed and new models executed. Note that this tutorial will focus
on neuroinformatics resources for cell and network modelling, and not cover the wide range of neuroimaging or
genetics databases.

References

[1] Open source at: https://github.com/NeuralEnsemble/NeuroinformaticsTutorial
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T5 Modeling and analysis of extracellular potentials

Allen Institute 286/287, Friday July 13, 09:00 - 12:00

Gaute Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway

Espen Hagen, Dept. of Physics, University of Oslo, Norway

While extracellular electrical recordings have been one of the main workhorses in electrophysiology, the interpre-
tation of such recordings is not trivial [1, 2, 3], as the measured signals result of both local and remote neuronal
activity. The recorded extracellular potentials in general stem from a complicated sum of contributions from all
transmembrane currents of the neurons in the vicinity of the electrode contact. The duration of spikes, the extra-
cellular signatures of neuronal action potentials, is so short that the high-frequency part of the recorded signal,
the multi-unit activity (MUA), often can be sorted into spiking contributions from the individual neurons surround-
ing the electrode [4]. No such simplifying feature aids us in the interpretation of the low-frequency part, the local
field potential (LFP). To take a full advantage of the new generation of silicon-based multielectrodes recording
from tens, hundreds or thousands of positions simultaneously, we thus need to develop new data analysis meth-
ods and models grounded in the biophysics of extracellular potentials [1, 3, 4]. This is the topic of the present
tutorial.

In the tutorial we will go through - the biophysics of extracellular recordings in the brain, - a scheme for biophys-
ically detailed modeling of extracellular potentials and the application to modeling single spikes [5-7], MUAs [8]
and LFPs, both from single neurons [9] and populations of neurons [8, 10-12], - LFPy (LFPy.github.io) [13], a ver-
satile tool based on Python and the NEURON simulation environment [14] (www.neuron.yale.edu) for calculation
of extracellular potentials around neurons and networks of neurons, as well as corresponding electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) signals.

References

[1] KH Pettersen et al., Extracellular spikes and CSD in Handbook of Neural Activity Measurement, Cambridge
(2012)

[2] G Buzsaki et al., Nat Rev Neurosci 13:407 (2012)

[3] GT Einevoll et al., Nat Rev Neurosci 14:770 (2013)

[4] GT Einevoll et al., Curr Op Neurobiol 22:11 (2012)

[5] G Holt, C Koch, J Comp Neurosci 6:169 (1999)

[6] J Gold et al., J Neurophysiol 95:3113 (2006)

[7] KH Pettersen and GT Einevoll, Biophys J 94:784 (2008)

[8] KH Pettersen et al., J Comp Neurosci 24:291 (2008)

[9] H Lindén et al., J Comp Neurosci 29: 423 (2010)

[10] H Lindén et al., Neuron 72:859 (2011)

[11] S Leski et al., PLoS Comp Biol 9:e1003137 (2013)

[12] E Hagen et al., Cereb Cortex 26:4461 (2016)

[13] H Lindén et al., Front Neuroinf 7:41 (2014)

[14] ML Hines et al., Front Neuroinf 3:1 (2009)
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T6 Single cell RNA-seq analysis for transcriptomic type characterization

Allen Institute 286/287, Friday July 13, 13:30 - 16:30

Zizhen Yao, Allen Institute, USA

Lucas Graybuck, Allen Institute, USA

The functional interplay of neural cell types gives rise to the complex, emergent function of neural tissues. To fully
understand the biology of the brain, we need to be able to distinguish and describe these cell types, and identify
markers that can be used to selectively label cell types for further study [1]. One scalable and comprehensive
method for identifying cell types in the brain is single cell RNA-sequencing. High-quality and large scale scRNA-
seq datasets provide data about the expression of thousands of genes from thousands of individual cells. With
this starting point, we can perform clustering analyses to identify the cell types of mouse and human brains.

In the first half of this tutorial, we will first give an introduction of single cell RNA-seq technology, with an overview
of multiple single cell studies in CNS, and commonly used computational tools. Then, we will focus on the
recent comprehensive survey of mouse cortical cell types conducted by the Allen Institute for Brain Science, and
give a summary of what we have learned about cell types in this study. In the second half of the tutorial, we will
introduce the single cell analysis tools we have developed at the Allen Institute for Brain Science. To enable users
to apply our analysis methods to their own datasets, we have developed the scrattch suite for R, which includes
scrattch.iterclust (iterative clustering methods), scrattch.vis (data visualization methods), and scrattch.io (file and
format handling). In the tutorial, we will demonstrate how these packages can be used to cluster scRNA-seq data
generated for 1,679 cells from Tasic, et al. 2016. Nat. Neurosci [2].

References

[1] Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using
single-cell transcriptomics. Nat Neurosci. 2016;19(9):1131-1141

[2] Tasic B, Venon M, et al. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics. Nat Neurosci.
2016; 19(2): 335-346

[3] Tasic B, Yao Z, et al. Shared and distinct transcriptomic cell types across neocortical areas. bioRxiv 229542;
doi: https://doi.org/10.1101/229542

[4] Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells
using nanoliter droplets. Cell. 2015;161(5):1202-1214
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Invited Presentations

Invited Presentations

Daniel Wolpert FMedSci FRS,
Mortimer B. Zuckerman Mind Brain Behavior Institute,
Columbia University,
New York, NY, USA

K1 – Probabilistic models of sensorimotor control and decision making

The effortless ease with which humans move our arms, our eyes, even our lips when we speak masks the true
complexity of the control processes involved. This is evident when we try to build machines to perform human
control tasks. I will review our work on how humans learn to make skilled movements covering probabilistic
models of learning, including Bayesian and structural learning as well as the role of context in activating motor
memories. I will also review our work showing the intimate interactions between decision making and sensorimo-
tor control processes. This includes the bidirectional flow of information between elements of decision formations
such as accumulated evidence and motor processes such as reflex gains. Taken together these studies show
that probabilistic models play a fundamental role in human sensorimotor control.

Rajesh Rao Hwang Endowed Professor of Computer Science & Engineering and
EE
University of Washington,
Seattle, WA, USA

K2 – The Bayesian brain: from predictive coding to decision making

How can the structure of brain circuits inform large-scale theories of brain function? We explore this question in
the context of Bayesian models of perception and action, which prescribe optimal ways of combining sensory
information with prior knowledge and rewards to enact behaviors. I will briefly review two Bayesian models,
deep predictive coding and partially observable Markov decision processes (POMDPs), and illustrate how circuit
structure can provide important clues to systems-level computation.
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Nancy Kopell Professor, Mathematics & Statistics,
Director, Cognitive Rhythms Collaborative,
Co-Director, CompNet,
Boston University,
Boston, MA, USA

K3 – Coordination, modulation and functional implications of brain rhythms

The neuroscience community is just beginning to understand how brain rhythms take part in cognition and how
flexible are the kinds of computations that can be made with rhythms. In this talk, I will discuss some case studies
demonstrating this enormous flexibility and important functional implications. Each of the case studies is about
some form of coordination. Examples include the interaction of multiple intrinsic time scales in a cortical rhythm in
response to a periodic input; the ability of a slow rhythm in the striatum to modulate two other rhythms in different
phases of its period; and the ability of a parietal rhythm to guide the formation, manipulation and termination of
a kind of working memory.

Eve Marder Professor of Biology,
Member, US National Academy of Sciences,
Volen National Center for Complex Systems,
Brandeis University,
Waltham, MA, USA

K4 – Differential resilience to perturbation of circuits with similar performance

Experimental work on the crustacean stomatogastric ganglion (STG) has revealed a 2-6 fold variability in many
of the parameters that are important for circuit dynamics. At the same time, a large body of theoretical work
shows that similar network performance can arise from diverse underlying parameter sets. Together, these lines
of evidence suggest that each individual animal, at any moment in its life-time, has found a different solution to
producing “good enough” motor patterns for healthy performance in the world. This poses the question of the
extent to which animals with different sets of underlying circuit parameters can respond reliably and robustly to
environmental perturbations and neuromodulation. Consequently, we study the effects of temperature, pH, high
K+, and neuromodulation on the pyloric rhythm of crabs. While all animals respond remarkably well to large envi-
ronmental perturbations, extreme perturbations that produce system “crashes” reveal the underlying parameter
differences in the population. Moreover, models of homeostatic regulation of intrinsic excitability give insight into
the kinds of mechanisms that could give rise to the highly variable solutions to stable circuit performance.
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Contributed Talks

Contributed Talks

F1 Predictive computations in the primary visual cortex

Jan Homann⋆, Michael Berry, Sue-Ann Koay, Alistair M. Glidden, and David W. Tank

Princeton University, Department of Neuroscience, Princeton, NJ, United States

Predictions about the future are important for an animal in order to interact with its environment. Therefore,
predictive computation might be a core operation carried out by neocortical microcircuits. We explored whether
the primary visual cortex can perform such computations by presenting repeated temporal sequences of static
images with occasional unpredictable disruptions. Simultaneous recordings of 150-250 neurons were performed
using two-photon Ca++ imaging of layer 2/3 neurons labeled with GCaMP6f in awake mice, who were head-fixed
but free to run on a styrofoam ball. In our visual stimuli, each spatial frame consisted of either an oriented grating
or a random superposition of Gabor filters.

We found that most of the neurons (∼98%) showed a strong reduction in activity over a few repeats of the
temporal sequence. When we presented a frame that violated the temporal sequence, these neurons responded
transiently. In contrast, a small fraction (∼2%) had activity that ramped up over several repeats, before reaching
a steady, sequence-modulated response. This partitioning of the neural population into transient and sustained
responses was observed for all temporal sequences tested. At the same time, the identity of which neurons were
transient versus sustained depended on the temporal sequence.

These features – adaptation to a repeated temporal sequence and a transient response to a sequence violation –
are hallmarks of predictive coding. After a few repeats, the temporal sequence becomes predictable and can be
efficiently represented by a small subset of the neural population. The unpredictable frame then elicits an error
signal because it encodes a potentially important novelty. In order to explore whether neural novelty signals could
be useful to the animal, we performed behavioral experiments with matched visual stimuli that demonstrated that
mice could easily learn to lick in response to a violation of an ongoing temporal sequence.
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F2 Response to deep brain stimulation in essential tremor: predictions beyond noisy data with a
Wilson-Cowan model

Benoit Duchet1⋆, Gihan Weerasinghe1, Christian Bick2, Hayriye Cagnan1, and Rafal Bogacz1

1University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom
2University of Oxford, Mathematical Institute, Oxford, United Kingdom

Thalamic deep brain stimulation (DBS) is a therapy option for Essential tremor (ET), the most common movement
disorder. Clinically available DBS delivers constant, high frequency electrical stimulation and could be improved
in terms of efficacy, reduction of side effects, and decrease in power usage.

Given phased locked stimulation data, we propose a method to study the effects of stimulation along both the
tremor oscillation phase axis and the tremor oscillation amplitude axis, with the goal of better informing stimulation
strategies. Because of noise in tremor recordings and experimental limitations, the amplitude axis is especially
difficult to access by direct data analysis in the phasic paradigm. We show that a Wilson-Cowan model can
be fitted to data, and thanks to isochronal and isostable coordinates, we obtain response curves and surfaces
for the noiseless model. The noiseless 2D phase response curves and amplitude response curves show good
agreement with the response curves obtained directly from experimental data. The 3D response surfaces give
us the ability to make predictions beyond what the noise level of the data can let us see. In that sense, our
method can be seen as a way of de-noising the experimental response to stimulation. Although mathematically
inspired by a canonical neuroscience model, our model includes the various neural populations thought to be
involved in the generation of ET, and allows for the stimulation of the most common target for ET DBS, the ventral
intermediate nucleus of the thalamus.

Our model predicts that only certain phases are conducive to amplitude reduction through stimulation, the best
of which being the phase that brings the system closer to the fixed point, where there are no pathological oscil-
lations. This particular phase is amplitude dependent, but in general the optimal stimulation phase occurs during
the descending part of the oscillations, slightly before the trough. Moreover, the response to stimulation is linearly
dependent on stimulation magnitude. We also find that the best phase to stimulate corresponds to the maximum
positive slope of the PRC. Finally, we report that the effects of stimulation are reduced as the amplitude of the
oscillations increases, and therefore predict that phasic stimulation will be less effective when delivered at higher
oscillation amplitudes.

Figure 1: Response curves and surfaces from isochronal and isostable coordinates for patient 1. The model
response curves agree with experimental data.
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F3 A molecular odorant transduction model and combinatorial encoding in the Drosophila Anten-
nae

Aurel A. Lazar, Chung-Heng Yeh⋆

Columbia University, Department of Electrical Engineering, New York, NY, United States

A key functionality of olfactory sensory neurons (OSNs) in the Drosophila antennae is to jointly encode both
odorant identity and odorant concentration. The identity of an odorant is combinatorially encoded by the set of
responding OSN groups expressing the same receptor type, and the size of OSN set varies as the concentration
changes. The temporal response of an OSN simultaneously represents the information of odorant concentra-
tion and concentration gradient. These two aspects of olfactory coding, identity and concentration, originate in
the odorant transduction process. However, detailed molecular models of the odorant transduction process are
scarce for fruit flies.

To address these challenges we advance a comprehensive model of fruit fly OSNs as a cascade consisting of
an odorant transduction process (OTP) and a biophysical spike generator (BSG). We model identity and concen-
tration in OTP by an odorant-receptor binding rate tensor modulated by the odorant concentration profile and an
odorant-receptor dissociation rate tensor, and quantitatively describe the ligand binding/dissociation process.

To biologically validate our modeling approach, we first propose an algorithm for estimating the affinity and the
dissociation rate of an odorant-receptor pair. We then apply the algorithm to electrophysiology recordings and
estimate the affinity and dissociation rate for three odorant-receptor pairs, (acetone, Or59b), (methyl butyrate,
Or59b), and (butyraldehyde, Or7a). Second, we evaluate the temporal response of the OSN model with a mul-
titude of stimuli, including step, ramp and parabolic odorant waveforms for all three odorant-receptor pairs. The
output of the model closely reproduces the temporal responses of OSNs obtained from in vivo electrophysiology
recordings for all three odorant-receptor pairs across all three types of stimuli. Lastly, we evaluate the model at
the OSN antennae population level. We first empirically estimate the odorant-receptor affinity using the spike
count records in the DoOR database for 24 receptor types in response to 110 odorants. With estimated affinity
values, we simulate the temporal response of the OSN population to staircase odorant waveforms. The output
of simulated OSN population demonstrates that the odorant identity is encoded in the set of odorant-activated
OSN groups expressing the same receptor type, and, more importantly, the size of the set expands or reduces
as the odorant concentration increases or decreases.

The fruit fly OSN model presented here provides a theoretical foundation for understanding the neural code of
both odorant identity and odorant concentration. It advances the state-of-the-art in a number of ways. First, it
models on the molecular level the combinatorial complexity of the transformation taking place in Drosophila an-
tennae OSNs. The resulting concentration-dependent combinatorial code determines the complexity of the input
space driving olfactory processing in the downstream neuropils, such as odorant recognition and olfactory as-
sociative learning. Second, the model is biologically validated using multiple electrophysiology recordings. Third,
the OSN model demonstrates that the currently available data for odorant-receptor responses only enables the
estimation of the affinity of the odorant-receptor pair. Our model calls for new experiments for massively identify-
ing the odorant-receptor dissociation rates of relevance to flies.
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Figure 1: Characterization of the fruit fly OSN model with multiple odorants and receptor types. Three odorant-
receptor pairs are tested. (A) (Or59b, acetone) (B) (Or59b, methyl butyrate). (C) (Or7a, butyraldehyde). (Odd
rows) Stimuli. (Even rows) PSTH from the model output and experimental recordings.
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O1 Generative model of visual cortex with short- and long-range recurrent interactions

Federica Cappareli⋆, Klaus Pawelzik, David Rotermund, and Udo Ernst
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In V1, neuronal responses are sensitive to context: responses to stimuli presented within the classical recep-
tive field are modulated by stimuli in the surround. Recently, sparse coding models [1] have been successful
in explaining part of these modulatory effects [2]: Their dynamics implements an inference process to seek an
optimal (w.r.t. accuracy and sparseness) representation of a visual input in terms of fundamental features. This
is achieved through a competition between similarly tuned neurons with overlapping input fields, which also me-
diates contextual modulation.

However, this connection scheme implies that neurons with non-overlapping input fields do not interact. There-
fore, the proposed mechanism does not provide a satisfactory explanation of the mechanisms behind these
phenomena, since contextual effects are usually caused by surround stimuli positioned far from the cRF (e.g.
Mizobe et al 2001 report collinear modulation for distance center-surround up to 12 deg). To overcome this lim-
itation, we propose an extension of the classical framework [2] by defining a new generative model for visual
scenes that includes dependencies among different features in spatially well-separated locations. To perform
inference in this model, we also derive a dynamical system that can be mapped to a neural circuit and a lateral
connection scheme for optimally processing local and contextual information.

The result can be interpreted as a neural network where units are linked by short range horizontal connections
within the same hypercolumn and by long range connections between different hypercolumns (Fig. 1b). Each
hypercolumn contains units that receive input from a localized region of the visual field and builds a sparse rep-
resentation of its input as if it was presented in isolation. In parallel, these local representations are combined by
providing contextual information to each other. In our simulations connections are learned from natural images.
Long-range connections reflect the co-occurrence of features in different visual field locations: this predicts a con-
nectivity structure linking neurons with similar orientation and spatial frequency preferences, which is similar to
the typical patterns found for long-ranging (3-4mm) horizontal axons in visual cortex [3]. Subjected to contextual
stimuli typically used in empirical studies, our model replicates several hallmark effects of contextual processing.
Hereby local and long-range interactions act hand-in-hand, for example in realizing two different origins of near
and far surround suppression, respectively [4]. In summary, our model provides a novel framework for contextual
processing in the visual system proposing a well-defined functional role for horizontal axons.
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Figure 1: (A) Example of stimuli from a natural scene (top) and dictionary of fundamental features (bottom) (B)
Scheme of the generative model (C) Network architecture to perform inference in the generative model
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O2 Info in a bottleneck: exploring the compression of visual information in the retina
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The retina is organized in convergent and divergent layers that compress and expand signals before passing
visual information along to the brain. Receptive fields anatomically correspond to the collection of inputs that
converge upon a single retinal output cell. This subunit circuit structure produces an information bottleneck be-
cause information is compressed along the pathway to an output neuron. We wondered whether the structure of
the retina combined with its adaptation properties serve to preserve information given this bottleneck.

A remarkable property of the retina is its ability to adapt its processing to environmental conditions. Adaptation
to background luminance shifts the nonlinear response filters of the subunits over a timescale of about a minute.
This has the effect of adjusting the linearity of responses in a manner that is dependent on the luminance en-
vironment. Another feature of the retina is the diversity of cell types present at the output layer. Within types,
there are ON and OFF versions of cell types which have sensitivities that are complementary but not symmet-
rical. Having complementary cell types combined with adaptation mechanisms may allow the retina to leverage
these redundancies under certain conditions while having the flexibility to adapt to an efficient or predictive code
in other conditions. We want to know whether the retina adapts its processing to maximize visual information
transmission by adjusting the subunit response functions in the circuit.

To quantify the amount of information that is preserved in the signals exiting the retina under this kind of set
up, we estimate the mutual information between a naturalistic stimulus set and the output from our model retina
circuit. We use a binless estimator to account for the fact that the input signals and the outputs are continu-
ous. Consistent with past studies, our preliminary results indicate that the optimal thresholds for the nonlinear
subunits depend on the amount of input noise given a naturalistic distribution of stimulus contrasts. Our work
builds on past studies by incorporating the known subunit structure into the circuit which produces information
compression. Under circumstances where subunits receive independent inputs, rather than correlated inputs, the
circuit is optimal when ON and OFF subunits redundantly encode the most prevalent stimuli for a broad range of
subunit noise levels. Our preliminary results suggest novel ways in which adaptation mechanisms, along with the
particular bottleneck structure of the retina, enable the retina to adapt the computations it produces in different
contexts.
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O3 Structural and dynamical properties of local cortical networks result from robust associative
learning

Danke Zhang, Chi Zhang, and Armen Stepanyants⋆
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Many ubiquitous features characterize the structure and dynamics of local cortical networks. At the level of pair-
wise connectivity, it is known that the probabilities of excitatory connections are generally lower than those for
inhibitory, and the majority of reported probabilities lies in the 0.10 − 0.19 range if the presynaptic cell is exci-
tatory and 0.25 − 0.56 range if it is inhibitory. It is also known that the distributions of connection weights have
stereotypic shapes with the majority of measured coefficients of variation (CV) of unitary postsynaptic potentials
in the 0.85 − 1.1 range for excitatory connections and slightly lower values for inhibitory, 0.78 − 0.96. At the level
of connectivity within 3-neuron clusters, several overrepresented connectivity motifs have been discovered. In-
formation becomes scarce as one considers larger clusters of neurons, but even here deviations from random
connectivity have been reported for clusters of 3-8 neurons. Similarly, many universal features characterize ac-
tivity of neurons in local cortical networks. For example, individual neurons exhibit highly irregular spiking activity,
resembling Poisson processes with close to one CV in inter-spike-intervals. Spike trains of nearby neurons are
only marginally correlated, 0.04− 0.15, and, at the network level, spiking activity can be described as sustained,
irregular, and asynchronous.

In this study, we pursue a hypothesis that associative learning alone is sufficient to explain these network fea-
tures. To test this hypothesis, we trained recurrent networks of excitatory and inhibitory McCulloch and Pitts
neurons [1,2] on memory sequences of varying lengths and compared network properties to those observed
experimentally. Learning in the network is mediated by changing connection weights in the presence of biologi-
cally inspired constraints. (1) Input connection weights of each neuron are sign-constrained to be non-negative
if the presynaptic neuron is excitatory and non-positive if it is inhibitory. (2) Input weights of each neuron are
homeostatically constrained to have a predefined l1-norm. (3) Each neuron must attempt to learn its associa-
tions robustly, so that they can be recalled correctly in the presence of a given level of postsynaptic noise. We
explore structural and dynamical properties of associative networks in the space of these constraints, and show
that there is a unique region of parameters that is consistent with all of the above-described experimental ob-
servations. In this region, local cortical circuits are loaded with associative memories close to their capacity and
memories can be successfully retrieved even in the presence of noise comparable to the baseline variations in
the postsynaptic potential, which provides an independent validation of the theory in terms of the hypothesized
network function. Confluence of these results suggests that many structural and dynamical properties of local
cortical networks are simply a byproduct of associative learning.

This work is supported by Air Force grant FA9550-15-1-0398 and NSF grant IIS-1526642.
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O4 Reduced models of an attractor neural network’s response to conflicting external inputs

Kathryn Hedrick⋆
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The theory of attractor neural networks has been influential in our understanding of the neural processes un-
derlying spatial, declarative, and episodic memory. Many theoretical studies focus on the inherent properties of
an attractor, such as its structure and capacity. Relatively little is known about how an attractor neural network
responds to external inputs, which often carry conflicting information about a stimulus. In this talk I will present
analytical results concerning the behavior of an attractor neural network’s response to conflicting external inputs.
My focus is on analyzing the emergent properties of the megamap model, a quasi-continuous attractor network
in which place cells are flexibly recombined to represent a large spatial environment (Hedrick and Zhang, 2016).
In this model, the system shows a sharp transition from the winner-take-all mode, which is characteristic of
standard continuous attractor neural networks, to a combinatorial mode in which the equilibrium activity pattern
combines embedded attractor states in response to conflicting external inputs. I derive a numerical test for de-
termining the operational mode of the system a priori. I then derive a linear transformation from the full model
to a reduced 2-unit model that has similar qualitative behavior. The analysis of the reduced model and explicit
expressions relating the parameters of the reduced model to the megamap elucidate the conditions under which
the combinatorial mode emerges and the dynamics in each mode given the relative strength of the attractor net-
work and the relative strength of the two conflicting inputs. Although my focus on a particular attractor network
model, I describe a set of conditions under which the reduced model can be applied to more general attractor
neural networks.

The reduced 2-unit model captures the amplitude of each activity bump but not its radius. I extend this reduced
model to examine the spatial effects on the system’s behavior by approximating the activity bump and recur-
rent connections using two-dimensional Gaussian tuning curves. Analysis of this reduced model reveals that
these spatial effects underlie the nonlinearities observed in the full megamap model but not in the reduced 2-unit
model. I compare these results to numerical simulations and electrophysiological data from an experiment in
which hippocampal place cells resolve conflicting external inputs from the medial entorhinal cortex (MEC) and
lateral entorhinal cortex (LEC) when local and global cues are rotated in opposite directions (Knierim and Ne-
unuebel, 2016). In this experiment, place cells in the CA3 (which are believed to form attractor neural networks)
coherently follow the noisy inputs from the LEC rather than the much stronger spatial inputs from the MEC. The
reduced model predicts that this surprising response is due to three factors: (1) CA3 place cells are initially driven
by the LEC input only, (2) the attractor network acts in the WTA mode, and (3) connections from MEC to CA3
are governed by fast Hebbian synaptic plasticity. To bridge the gap between the idealistic theory and the noisy
electrophysiological data, I run numerical simulations using the conductance-based integrate and fire model and
unsupervised Hebbian plasticity. The noise in the model leads to the partial remapping observed experimentally.
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O5 Topologies of repetitive functional network motifs vary dynamically with age in the developing
human brain: Evidence from very high-dimensional invasive brain signals
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Throughout the course of the day, or even an hour, functional brain networks are continuously recruited to process
thousands of inputs from the outside world and respond to the demands of countless behaviors and cognitive
processes. Across scales of organization, these networks’ small-world and scale-free topologies facilitate opti-
mally efficient neural information processing. However, the building blocks of these networks (modules or motifs),
their emergence, re-organization during development and time-dependent stereotypy remain poorly understood.
Unrelated theoretical work has shown that specific network patterns emerge as a result of a dynamic system’s
propensity towards a stable configuration. There is also growing evidence from both animal and human studies
that a relatively small number of such modules are combined (in potentially infinite ways) to give rise to the
observed functional network topologies. In this study, we investigated the organization, size and stereotypy of
functional network motifs in the developing human brain, using very high-dimensional invasive human electro-
physiological signals, collected continuously over long periods of time (typically several days) from a relatively
large number of children and young adults (n = 39, age <1 to 23 years) with intracerebral electrode grids cov-
ering different parts of the brain. All patients had recordings from a relatively large number (>70) of electrodes.
Information theoretic and contraction theoretic measures were used to estimate functional connectivity, identify
sub-network patterns (motifs) that occurred repetitively over time and independently of the area of the brain being
spatially sampled, and characterize their stability (using an eigenvalue analysis).

A relatively small number of functionally active nodes were estimated, which formed stable patterns that occurred
repetitively across temporal scales and brain regions. The size of these patterns (number of activated nodes)
changed with age, with progressively smaller sub-graphs (3-4 nodes) emerging as a function of neural matura-
tion. Across ages, identified motifs were consistently correlated with network stability. These results indicate the
although stable functional network motifs may be in place early in life to process multi-modal sensory informa-
tion, re-organization of the brainâC™s neural circuitry as a function of neural maturation may lead to increasingly
parsimonious modules to facilitate increasingly efficient neural information processing. These modules may also
constitute a network-level biomarker of neural maturation at the macroscale sampled by invasive human record-
ings.
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O6 Revealing principles of cortical computation using the Allen Brain Observatory: A large, stan-
dardized calcium imaging dataset from the mouse visual cortex
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A prominent question of sensory processing is how information is represented and transformed by the neural
circuit through multiple layers and across multiple areas in order to create perceptions and ultimately guide
behavior. In order to facilitate uncovering these principles, we have created the Allen Brain Observatory. This is
a public dataset of neural responses collected from visual areas of awake mouse cortex using 2-photon calcium
imaging. We systematically recorded responses from over 50,000 neurons in over 500 experiments, using a
high-throughput imaging pipeline. Data were collected from 6 cortical areas and 4 cortical layers. GCaMP6f was
transgenically expressed, driven by 13 different Cre lines which limit expression to specific subsets of excitatory
(10 Cre lines) or inhibitory cells (3 Cre lines). Visual responses were imaged in response to an array of both
artificial and natural stimuli, including drifting gratings, static gratings, locally sparse noise, natural scenes and
natural movies while the mouse was awake and free to run on a running disc. Several metrics were computed
to describe the visual responses of the neurons, including orientation and direction selectivity, image selectivity,
lifetime sparseness, and receptive field areas.

Surveying these metrics across areas, layers and Cre-defined cell populations, several patterns emerge. Layer
4 exhibited clear differences across areas and cell populations, but these differences were reduced in the other
layers. This pattern is consistent with layer 4 predominately carrying feedforward thalamocortical input, while
layers 2/3, 5 and 6 represent higher order responses.

One of the most striking results in this dataset is the small numbers of responsive cells and the remarkable
variability of the responses of these cells. Only 57% of cells in the Brain Observatory dataset respond to any
of the visual stimuli presented. Further, even responsive cells show large trial-to-trial variability. We fit these
neurons to a simple wavelet pyramid model with simple (linear-nonlinear) and complex components (the “energy”
model). Roughly 15% of neurons in the dataset show significantly predictable responses to visual stimuli via
this model, with relatively low explainable variance. All cells also show some degree of “complex” behavior, ie.
there are no purely “simple” cells according to this model. We compare the representations in each layer and
area to responses generated by standard Convolutional Neural Networks, a model derived from the canonical
understanding of the cat visual system. We find that the mouse cortex are most similar to early middle areas of
ConvNets, rather than the initial Gabor-like layer thought to describe responses in V1 of cats.

Finally, we examine the correlation structure of population activity, showing that correlations in neural responses
have an impact on information transmission in an area and layer dependent fashion. Furthermore, we show
that the “noise” and “signal” correlations are positively correlated throughout the mouse visual system, providing
strong evidence against certain types of theories that exhibit “explaining away”, ie. theories in which neurons
with similar mean tuning properties will functionally inhibit one another, such as the sparse coding model of Ol-
shausen and Field and some probabilistic coding models. This dataset provides a testbed for theories of cortical
computations and will be a valuable resource for the community.
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Brain activity can be understood as the exploration of a dynamical landscape of activity configurations over both
space and time. This dynamical landscape may be defined in terms of spontaneous transitions within a repertoire
of discrete metastable states of functional connectivity (FC), or “FC states”, which underlie different mental pro-
cesses. It however remains unclear how the brain’s dynamical landscape might be disrupted in altered states of
consciousness, such as the psychedelic state. The present study investigates changes in the brain’s dynamical
repertoire in a rare fMRI dataset consisting of healthy participants intravenously injected with the psychedelic
compound psilocybin; the active compound in magic mushrooms. We employed a data-driven approach to study
brain dynamics in the psychedelic state, which focuses on the dominant FC pattern captured by the leading
eigenvector of dynamic FC matrices, and enables the identification of recurrent FC patterns (“FC-state”), and
their transition profiles over time. We found that a FC state closely corresponding to the fronto-parietal control
system was strongly destabilized by the drug, while transitions toward a globally synchronized FC state were en-
hanced. These differences between brain state trajectories in normal waking consciousness and the psychedelic
state suggest that psilocybin induces an alternative type of unconstrained functional integration at the expense of
locally segregated activity specific networks supporting executive function. These results provide a mechanistic
perspective on the acute psychological effects of psychedelics, and further raise the possibility that mapping the
brain’s dynamical landscape may help guide pharmacological interventions in neuropsychiatric disorders.
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O8 Understanding the bispectrum as a measure of cross-frequency coupling

Christopher Kovach⋆
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Interest in the origin and significance of cross-frequency coupling in electrophysiological signals has grown
rapidly over the last several years, with particular emphasis on phase-amplitude coupling (PAC). Much of this
recent attention has focused on measures of PAC obtained from filtered analytic signals through the compari-
son of phase and analytic envelope. As use of these measures has increased, so has an appreciation of their
ambiguities, attested by an expanding cautionary literature on the topic.

Meanwhile, “classical” statistically motivated measures of cross-frequency coupling derived from spectral repre-
sentations of higher moments have remained at the periphery of the latest surge of attention, due in large part
to a common perception that such measures are comparatively difficult to interpret and that they relate to a form
of cross-frequency coupling distinct from PAC. Recently, we have shown that common PAC measures are, in
fact, fundamentally normalized bispectral estimators which yield smoothed estimates of the true signal bispec-
trum [1]. Differences between the measures relate to properties of the respective smoothing kernels. In light of
this observation, classical bispectral estimators can claim a number of advantages over recently introduced PAC
measures, including more favorable bias properties and freedom from the constraints on range and resolution
that are inherent in PAC measures.

Interpretation of the bispectrum is commonly explained in terms of “quadratic” phase coupling between spec-
trally narrow signal components; in demonstrating the relationship to PAC measures, we develop an alterna-
tive approach to interpretion through a decomposition of the signal into spectrally broad transient components.
The relationship between PAC measures and the bispectrum can be understood by considering the case of a
low-frequency transient, corresponding to the “slow” oscillation (SO), accompanied by a transiently windowed
high-frequency “fast” oscillation (FO). As detailed in Figures 1 and 2, windowing of the FO at the scale of the
SO implies that the the bispectrum contains a straightforward representation of the spectrum of the SO and the
power spectrum of the FO, from which both might be directly recovered to good approximation. Moreover, within
the range of the FO, the phase bispectrum encodes the relative delay between the SO and the FO modulat-
ing window. With these insights we develop guidelines for the evaluation of PAC from bispectral statistics. This
framework addresses a number of the recently identified limitations and ambiguities of PAC measures.

Finally, some extensions of this framework towards the blind recovery of recurring transient signal features are
briefly considered. The feasibility of this application is demonstrated through the identification of auditory evoked
responses in human intracranial recordings from both controlled stimuli (click trains) and uncontrolled ecologically
meaningful stimuli (a video soundtrack) with no foreknowledge of the stimulus.
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O9 Spinal interneurons and locomotor speed and gait control in quadrupeds
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To effectively move in a complex and dynamic environment, limbed animals should vary locomotor speed and
adapt gaits to the desired speed and the environment. With increasing locomotor speed, quadrupedal animals,
including mice, switch locomotor gait from walk to trot and then to gallop and bound. Centrally, the locomotor
gaits are controlled by interactions between four central pattern generators (CPGs) located on the left and right
sides of the lumbar and cervical enlargements of the cord, and each producing rhythmic activity controlling one
limb. The activity of these CPGs are coordinated by commissural interneurons (CINs), projecting across the mid-
line to the contralateral side of the cord, and by long propriospinal neurons (LPNs) that connect the cervical and
lumbar CPG circuits in both directions.

We use computational modeling to investigate how the CIN and LPN connections between the cervical and lum-
bar, left and right CPGs can be organized and what roles different CIN and LPN pathways play in the control and
speed-dependent expression of different gaits. Our model contains four rhythm generators (RGs) with left-right
cervical and lumbar CIN interactions and homolateral and diagonal ascending and descending LPN interactions.
These interactions are organized via several interneuronal pathways mediated by genetically identified neuron
types and are based on their suggested functions and connectivity. Supraspinal (brainstem) drives excite all RGs,
thereby controlling oscillation frequency, and inhibit some CINs and LPNs, which allows the model to reproduce
the speed-dependent gait transitions observed in the intact mice [1].

The model reproduces the experimentally observed loss of particular gaits after selective removal of geneti-
cally identified neurons (V2a, V0V, or all V0) and the speed-dependent disruption of hind limb coordination after
deletion of ascending (cervical-to- lumbar) LPNs [2]. The model suggests that (1) V0D and V0V CINs together
secure left-right alternation, whereas V3 CINs promote left-right synchronization, and that (2) V0D LPNs support
diagonal alternation, whereas V0V LPNs promote diagonal synchronization. Thus, V0D CINs and LPNs together
stabilize walk and V0V CINs and LPNs stabilize trot. The transition from trot to gallop and bound occurs when
the activity of V3 CINs overcomes the activity of (brainstem-drive inhibited) V0V CINs and diagonal LPNs.

Our simulations have also shown that external inputs to CINs and LPNs, other than supraspinal drives controlling
locomotor frequency, can induce gait changes independent of speed. These inputs may represent activities of
sensory afferents, which is consistent with multiple experimental data showing that CINs and LPNs receive direct
and indirect inputs from sensory afferents. Based on the results of these simulations we suggest that CINs and
LPNs represent the main neural targets for different local/intraspinal, supraspinal, and sensory inputs to control
interlimb coordination and adjust locomotor gait to various internal and external conditions.

The model proposes a series of testable predictions, including the anticipated effects of the deletion of particular
identified types of CINs and LPNs, and can be used as a test bed for simulating various spinal cord perturbations
and injuries.
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Network (population) bursts are a signature neuronal activity in a critical brainstem region for respiratory rhythm
generation, the pre-Botzinger complex (pre-BotC). During the initiation of a network burst, the pre-BotC shows
a consistent pattern of dynamic transitions. Starting with mostly silent neurons, the pre-BotC transitions to an
intermediate state with a positive fraction of firing neurons that may include tonically spiking and bursting neurons.
When a sufficient number of neurons becomes engaged in firing, the pre-BotC network finally undergoes a
transition to a population burst, characterized by a high fraction of simultaneously bursting neurons.

Over the last few decades several models of population bursts in the pre-BotC have been proposed, including
conductance-based models featuring various ionic currents, such as INaP and ICAN. While the main objective
of these models was to identify the bio-physical driving sources underlying network burst initiation, the role of
the synaptic connection patterns in shaping neuronal activity has been relatively overlooked. The main reason
for this omission is that the models are too complicated for a full analytical treatment and, due to computational
limitations, it is difficult to gain full insight into the influence of connectivity.

To overcome these obstacles, we propose a simplified model, which is based on a bootstrap percolation process,
and is defined as follows. For a given graph, every node has three possible states: inactive, weakly- active, and
fully-active, which correspond to silence, tonic spiking and bursting, respectively. We initialize all nodes to the
weakly-active state with probability p1 and to the fully-active state with probability p2, independently of other
nodes. As the process evolves, an inactive node will transit to the weakly-active state if the amount of activity
among its neighbors exceeds a threshold k1, and if the amount is greater than k2, it will transit to the fully-active
state. Similarly, a weakly-active node becomes fully-active if the amount of activity among its neighbors exceeds
k2. Nodes cannot reduce their activity levels, and those nodes that are fully-active will not change their states
until the end of a trial.

We analyze this process analytically and computationally on various random graph models and address three
questions. First, we determine values p1 and p2 as functions of k1 and k2 for which the network reaches a
population burst at the end of a trial. Our findings suggest possible reasons why the network may fail to generate
a population burst after the deletion of a fixed fraction of arbitrary nodes in the network, which is consistent with
laser ablation of rhythmogenic pre-BotC (Dbx1) neurons in experiments. Second, we investigate how structural
features of different graph models affect the duration of the process. Lastly, we describe how using nodal mea-
sures we may identify nodes that, when activated initially, are particularly well suited to ignite a population burst.
This result shows that local properties of graphs are good descriptors of the spread of bursting activity and also
addresses the extent to which successive population bursts may feature similar or different initiation mechanisms.
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O11 Traveling waves in single cortical regions: mechanisms and emerging computational principles

Lyle Muller⋆, Terrence Sejnowski

Salk Institute for Biological Studies, Computational Neurobiology Laboratory (CNL), La Jolla, CA, United States

With new multichannel recording technologies, neuroscientists can now record from single cortical regions with
high spatial and temporal resolution. Early recordings during anesthesia found spontaneous and stimulus-evoked
waves traveling across single cortical regions. For a long time, however, these waves were thought to disappear
in awake animals and during high-input regimes. By introducing new signal processing methods for moment-by-
moment detection and characterization of spatiotemporal patterns under noise, our recent work has found that
small visual stimuli evoke waves traveling out from the point of thalamocortical input to primary visual cortex in
the awake monkey [1]. Further, using a measure of directed information transfer across recording sites in V1 of
anesthetized monkey, another group has found that traveling waves can influence intracortical dynamics during
viewing of natural stimuli [2]. These results indicate that traveling waves can play a role in organizing neural
activity during natural sensory processing. Their overall computational role in sensory cortex, however, remains
poorly understood.

Here, we introduce a spiking model that captures a general network-level mechanism for traveling waves in cor-
tex. We study networks in the self-sustained activity regime [3], where conductance-based networks of neurons
can create an internally generated noise [4] consistent with the irregular-asynchronous (IA) background activity
state in cortex [5]. We find that a microscopic property – the axonal conduction velocity – profoundly controls the
spatiotemporal structure of the spontaneous background state. While previous work has generally considered
the time delays from intraregional recurrent fibers to be negligible, these can range up to tens of milliseconds
over a few millimeters of the cortical surface, and their inclusion shapes self-sustained activity patterns into
spontaneous traveling waves matching those observed in recordings from cortex. By studying networks from
104 to 106 neurons through a range of connectivity regimes, from very sparse (100 synapses/cell) to that found
in cortex (10,000 synapses/cell, [6]), we identify spatiotemporal patterns ranging from dense waves, where the
fraction of individual neurons participating in a passing wave is nearly unity, to sparse waves, where this fraction
becomes very low. The sparse wave regime offers a unique operating mode, where many waves can coexist
while weakly interacting during their propagation across the network. Finally, in collaboration with the laboratory
of John Reynolds (Salk Institute), we show how spontaneous, sparse traveling waves can affect visual process-
ing in the awake marmoset, leading to dynamic shifts in perceptual thresholds.
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O12 Excitable dynamics of NREM sleep: a unifying model for neocortex and hippocampus

Daniel Levenstein1⋆, György Buzáki, and John Rinzel2

1New York University, Neuroscience Institute, New York, NY, United States
2New York University, Center for Neural Science & Courant Institute of Mathematical Sciences, New York, NY,
United States

During non-rapid eye movement (NREM) sleep, the neocortex continuously alternates between states of neu-
ronal spiking (UP states) and inactivity (DOWN states). Similarly, the hippocampus also shows continuous al-
ternations between brief periods of neuronal activity (SPW-Rs) and relative inactivity. While the durations of ac-
tive/inactive states are dramatically different in the two regions, the hippocampus and neocortex are both cortical
tissue and are under similar neuromodulatory influence during NREM. Thus, it prompts one to wonder whether
the neocortical UP/DOWN states and hippocampal SPW-Rs might be explained by similar mechanisms. Fur-
thermore, the mechanisms by which alternation dynamics in the two regions interact to support NREM function
are unclear. To address these questions, we used an idealized firing rate model of UP/DOWN alternations with
four distinct dynamical regimes, which are distinguished by the stability or transience of UP/DOWN states and
encompass those seen in previous studies. By directly matching model dynamics with experimental observa-
tions in naturally-sleeping rats, we found that the alternation dynamics observed in neocortex and hippocampus
during NREM reflect two distinct regimes of excitable activity that show characteristically asymmetric durations
of UP/DOWN states. Specifically, we find that the neocortical dynamics reflect a stable UP state interrupted by
transient DOWN states (slow waves), while the hippocampal dynamics reflect a stable DOWN state with transient
UP states (sharp waves). We further considered the effects of including an inhibitory population in the model.
We find that under conditions of balanced excitation and inhibition, neocortical UP->DOWN transitions can be
evoked by excitatory input and are followed by a high frequency oscillation at the DOWN->UP transition, as is
observed in vivo. We propose that during NREM sleep, hippocampal and neocortical populations are in excitable
states, from which small fluctuations can evoke the transient events that support NREM function. The excitable
dynamics we describe suggest a mechanism by which the two structures could show a form of communication
through “stochastic synchronization" of spontaneous population events during NREM sleep.
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O13 Biological mechanisms for learning: A computational model of olfactory learning in the Manduca
sexta moth

Charles Delahunt1⋆, Jeffrey Riffell2, and J. Nathan Kutz1

1University of Washington, Deparment of Applied Mathematics, Seattle, WA, United States
2University of Washington, Department of Biology, Seattle, WA, United States

The moth olfactory network, which includes the antennal lobe (AL), mushroom body (MB), and ancillary struc-
tures, is a relatively simple biological neural system that is capable of learning. Its structural features include
motifs that are widespread in biological neural systems, such as a cascade of networks, large dimension shifts
from stage to stage, sparsity, noise, and randomness. Learning is enabled by a neuromodulatory reward mecha-
nism of octopamine stimulation of the AL, whose increased activity induces rewiring of the MB through Hebbian
plasticity.

The goal of this work is to analyze how these various components interact to enable learning. To this end, we build
a computational model of the moth olfactory network, including the dynamics of octopamine stimulation, which
is closely aligned with the known biophysics of the AL-MB and with in vivo AL firing rate data of moths during
learning. To our knowledge this is the first full, end-to-end neural network model that demonstrates learning
behavior while also closely matching the structure and behavior of a particular biological system. The model is
able to robustly learn new odors, and provides a valuable tool for examining the role of octopamine in learning.
This octopamine mechanism during learning is of particular interest, since how it promotes the construction of
new codes in the MB is not understood.

Specifically, our experiments elucidate key biological mechanisms for fast learning from noisy data that rely
on an interaction between cascaded networks, sparsity, Hebbian plasticity, and neuromodulatory stimulation by
octopamine.
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O14 Modeling of TRP channel mediated noxious cold sensation in Drosophila sensory neurons

Natalia Maksymchuk⋆, Atit Patel, Nathaniel Himmel, Daniel Cox, and Gennady Cymbalyuk

Georgia State University, Neuroscience Institute, Atlanta, GA, United States

Intracellular Ca2+ concentration usually correlates with the neuronal pattern and behavioral response. However,
noxious cold sensation in Drosophila presents a paradox with these associations. Pkd2 and Trpm channels are
required to trigger nociceptive full body contraction (CT) under acute cold [1]. Trpm mutants exhibit an increase
in [Ca2+]i levels above control and display reduction of CT behavior, whereas Pkd2 mutants showed reductions
in [Ca2+]i level and inhibition of behavior [1].

We developed a Hodgkin-Huxley-type model of the cold sensitive CIII neurons to investigate interaction of Pkd2,
Trpm and SK currents and to explain the experimental paradox. Our main mechanism assumes that the mu-
tation of Trpm is homeostatically accompanied by a compensatory increase of the total Pkd2 current conduc-
tance, which leads to an amplified rise of [Ca2+]i under noxious cold temperatures. This higher [Ca2+]i activates
stronger SK current which hyperpolarizes the membrane potential and suppresses spiking. This leads to in-
hibition of the stereotyped CT behavior under noxious cold stimuli. This model prediction is supported by the
experiments, which showed 2-fold increase of Pkd2 mRNA levels in Trpm mutants relative to control, while no
change in Trpm mRNA levels was observed in Pkd2 mutants.

Basic models of the CIII neuron describing responses of Control, Trpm and Pkd2 mutants show transitions from
silence at room temperature to spiking activity below 18 degrees Celsius, but have distinct features. Models of
Control and Trpm mutants reach a maximum spike frequency near 14.5 degrees Celsius, while Pkd2 mutants
exhibited a maximum frequency at 6 degrees Celsius and had a smaller frequency compared to Control and
Trpm mutants. The decrease of maximum frequency in Pkd2 mutants as well as absence of spiking activity for
most of the temperature range in Trpm mutants may explain the inhibition of CT behavior under noxious cold.

The [Ca2+] responses of the three models describing control, Trpm and Pkd2 mutants are in agreement with the
corresponding experimental data [1]. [Ca2+]i signal of CIII neurons under noxious cold is the strongest in Trpm
mutants and the weakest in Pkd2 mutants. Thus, the model and experimental results suggest that cold-evoked
CT behavior is tuned to an optimal Ca2+ level which does not always functionally represent level of neuronal
excitation.

Also, the basic model currently exhibits a wide spectrum of qualitatively different activity regimes. Depending on
the parameter set, the model could show different regimes which are associated with different levels of [Ca2+]i
and could be arranged into an alternative scheme of the temperature coding following the sequence of tran-
sitions between regimes: small amplitude spiking, period doubling cascade, bursting, large amplitude spiking,
and rest state along with the temperature going down. These two coding schemes provide robust and generic
mechanisms of coding modality-specific activity patterns by coordinated modality-specific activation of two TRP
currents.
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O15 A geometric attractor mechanism for the self-organization of entorhinal grid modules

Louis Kang1⋆, Vijay Balasubramanian2
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The grid system of the mammalian medial entorhinal cortex (mEC) exhibits striking modularity. Rat grid cell
recordings reveal that spatial grid scales cluster around discrete values separated by constant ratios reported
in the range 1.3-1.8. Although this modular organization has been shown to be a robust and efficient encoding
of spatial location, its origin is unknown. We present the first proposed mechanism through which geometric se-
quences of grid scales arise naturally. A series of continuous attractor networks along the longitudinal mEC axis
that would otherwise generate a smooth distribution of grid scales forms modules separated by discrete jumps in
scale when excitatory connections are introduced. Moreover, constant scale ratios between successive modules
arise through robust geometric relationships between commensurate triangular grids, whose lattice constants
are separated by [sqrt(1.7)] or other ratios, or between grids containing local lattice modulations called discom-
mensurations. These relationships persist in single neuron spatial rate maps due to faithful path integration and
are unaffected by perturbations to model parameters. We speculate on how excitatory connections between at-
tractor networks can be realized by the known architecture of the mEC and suggest analyses and experiments
that test our model.

Figure 1: Grid cells with smoothly distributed scales self-organize into discrete modules when excitatory con-
nections along the medial entorhinal cortex (mEC) are added. Adjacent modules have fixed scale ratios and
orientation differences due to robust geometric relationships between commensurate triangular lattices.
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O16 Simulating in vivo context-dependent recruitment of CA1 hippocampal interneuron specific 3
(IS3) interneurons

Alexandre Guet-McCreight⋆, Frances Skinner

Krembil Research Institute, Division of Fundamental Neurobiology, Toronto, Canada

Obtaining recordings from individual cells during behaviour is technically challenging, especially for the diverse
interneuron subtypes that tend to be smaller, less accessible, and less identifiable relative to excitatory cells.
As such, it is difficult to determine inhibitory cell contributions but it is clear that consideration of interneuron
subtypes is critical to understanding brain function and behavior (Kepecs & Fishell, 2014). To address this, we
use computational approaches. We focus on the hippocampal CA1 interneuron specific 3 (IS3) cell, a cell type
that has not yet been recorded from in vivo. Notably, though IS3 cells represent a small fraction of interneurons in
CA1 hippocampus, they possess unique circuitry properties in that they only inhibit other inhibitory neurons, such
as Oriens Lacunosum Moleculare (OLM) interneurons. In vitro, photo-activation of IS3 cells at theta frequencies
has been shown to elicit theta-timed spiking in OLM cells (Tyan et al, 2014). To explore the potential contributions
of IS3 cells during in vivo contexts, we use multi-compartment IS3 cell models to generate predictions of input
populations that could either enhance or dampen IS3 cell activities during behavior.

We have developed data-driven multi-compartment models of IS3 cells with active dendritic properties (Guet-
McCreight et al, 2016), determined realistic synaptic parameters along the dendritic morphology of the models
(Guet-McCreight et al, 2017), and estimated numbers of active synapses and presynaptic spike rates to gener-
ate in vivo-like states for IS3 cell models. Here, we consider context-dependent recruitment of IS3 cells during
simulated states of theta rhythms and sharp-wave associated ripples (SWRs). During these states, we use our
models to predict the contributions of different presynaptic inhibitory and excitatory input populations.

Our results show that excitatory theta-timed inputs from CA3 and entorhinal cortex can modulate the timing of
IS3 cell spiking during theta rhythms. Moreover, depending on their relative contributions, the timing of the IS3
cell model’s spiking can occur anywhere between the rising phase and peak of the theta cycle. As well, we show
that inhibitory inputs can dampen spike recruitment of IS3 cells regardless of phase, though less so for inhibitory
inputs that are the most antiphase relative to excitatory inputs. For our simulated SWR context, we show that
transiently bursting CA3 inputs alone are sufficient to recruit the IS3 cell model to spike. We also show that the
presence of feedforward inhibition on the proximal dendrites of the model can sufficiently dampen IS3 cell spik-
ing during a SWR context. In summary, we have simulated in vivo-like contexts where IS3 cell spike recruitment
can be either enhanced or dampened. Our results highlight possible IS3 cell spiking scenarios and thus their
potential contributions to brain function and behavior.
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O17 Quantitative simplification of detailed microcircuit demonstrates the limitations to common
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3Imperial College London, Department of Physics, United Kingdom
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A first-draft detailed simulation of a piece of the rat neocortex has recently been reported by an international
collaboration [1]. This work integrated the current state of experimental knowledge on the detailed 3D anatomy
and physiology of the various neuron types, and their synaptic properties and connectivity, and was shown to
reproduce findings from a range of in vivo experiments reported in the literature without parameter tuning. On
the other hand, for large-scale network simulations, point-neuron models are typically used for describing and
analyzing network dynamics and functions. The properties and connectivity structure of point neuron models
generally are not constrained by biological data and thus use ad hoc simplifying assumptions. This makes some
of the mathematically tractable models somewhat disconnected from experimental neuroscience. To bridge the
gap between these two extremes (the detailed and the oversimplified), we aimed to derive point-neuron net-
work models from data-driven detailed network models in an automated, repeatable and quantitatively verifiable
manner. The simplification occurs in a modular workflow, in an in vivo-like state. First, synapses are displaced
from dendrites to the soma while correcting for dendritic filtering using low-pass filters for the synaptic current
numerically calibrated for each dendritic compartment. Next, point-neuron models for each neuron in the micro-
circuit are fitted to their respective morphologically detailed counterparts. Here, generalized integrate-and-fire
point neuron models are used, leveraging a recently published fitting toolbox [2]. The fits are constrained by cur-
rents and voltages computed in the morphologically detailed reference neurons with soma-displaced synapses,
as described above. Benchmarking the simplified network model to the detailed microcircuit model for a range of
simulated in vivo and in vitro protocols, we found good agreement for both quantitative and qualitative aspects.
Our automated approach not only makes it possible to continuously update the simplified circuit as the detailed
network integrates new data, but the modularity of the simplification process also makes it applicable to other
point neuron and synapse models, network models, and simulators. In addition to providing an extensive assess-
ment of validity for carefully reduced point neuron network models, our approach is fundamentally important and
informative, in particular in cases when network functionalities are lost during the simplification pipeline. By tak-
ing the simplification further to evaluate common simplifying assumptions, we further illustrate the contributions
of specific synaptic and cellular dynamics to the overall response of the detailed network, revealing limitations
for several common approaches.
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O18 A novel synaptic plasticity rule for detailed model neurons with realistic dendrites
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Numerous experiments have been conducted in the past in order to monitor the complex interactions that drive
activity-dependent long-term plasticity of synapses. Spike timing, firing rate and synaptic location have been
found to be important factors that dynamically contribute to the outcomes of plasticity induction protocols. While
several theoretical models that implement plasticity rules already exist, they have not yet been used in depth to
study plasticity in neuron models with detailed morphology. Here, we extend previous phenomenological voltage-
based plasticity rules by developing a new framework based on three signaling pathways. We apply it to a L5
pyramidal cell model with active dendritic properties and realistic propagation of voltage. We show that our novel
rule not only reconciles outcomes of several experiments but also predicts spatiotemporal patterns of plasticity
that are characteristic for individual stimulation protocols and their impact on local processes at the synapse,
including protocols inducing local plasticity in tuft dendrites. Due to this focus on local voltage signals, our frame-
work can explain synaptic plasticity in the absence of postsynaptic action potentials, as suggested in recent
studies. We thereby link experimental results that would intuitively seem to require entirely different rules, show-
ing that a unifying rule might explain the vast majority of experiments in cortical pyramidal cells if key biophysical
pathways are taken into account. Ultimately, we can now study how the cell-type specific electrotonic properties
can explain differences in emerging plasticity by incorporating our plasticity rule in a variety of existing detailed
compartmental models such as models of hippocampal pyramidal or granule cells. To summarize, a simple plas-
ticity rule that utilizes pre- and postsynaptic plasticity pathways can explain experimental results with a large
variety of induction protocols when the plasticity rule is incorporated in the compartmentalized structure of a
detailed dendritic model.
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O19 Assisted construction of hybrid circuits: making easy the implementation and automation of
interactions between living and model neurons

Manuel Reyes-Sanchez, Irene Elices Ocon⋆, Rodrigo Amaducci, Francisco B Rodriguez, and Pablo
Varona

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

Closed-loop interactions with the nervous system are a powerful approach to characterize neural dynamics and
control network functions [1,2]. In particular, neuron models can interact with living neurons in hybrid circuits once
proper adaptation is achieved in both directions [3,4]. Such adaptations are not easy to accomplish in a manual
trial-and-error process, and are better determined with closed-loop protocols based on real-time event detection
[5] and well-defined interaction goals and performance measurements. This work presents a set of algorithms
for the assisted construction of hybrid circuits. These algorithms have been implemented in RTHybrid, an open-
source cross-platform real-time model library [6].

Our real-time algorithms for assisted construction of hybrid circuits are based in a general closed-loop paradigm
designed to be modular and effective. The algorithms perform as a function of their online measured input
parameters the following tasks: (1) temporal and amplitude scaling, (2) drift compensation, (3) synaptic tun-
ing/calibration, (4) model turning/calibration, (5) automatic activity control, (6) automatic mapping of the dynam-
ics. The temporal and amplitude scales are evaluated and matched online to create compatible working regimes
between the model and living neurons [4]. All protocols use three steps: event detection, activity and connection
characterization and target performance evaluation. The events detected online include: spikes, bursts, hyperpo-
larization intervals, voltage ranges, temporal structures, phases, etc. The interaction characterization measures
include event timings, instantaneous periods, synchronization levels, target phases, and working/dynamic range
assessments. When the interaction goal is not fulfilled, the target evaluator algorithm changes in an informed
and automatic manner the parameters of the hybrid circuit. Our algorithms have been validated in a hybrid circuit
to study the presence of dynamical invariants in CPGs.

In conclusion, hybrid circuits require experiment-specific adaptations to work properly, and the parameters of
the implementation must be evaluated dynamically on each preparation and even adapted during the same
experiment. These algorithms can also be used to automatically map the parameter space to achieve a given
goal, and in general to control/explore/unveil bifurcations and circuit dynamics.
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O20 Deciphering the evolutionary route to the first neurons
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We do not yet know how the very first nervous systems and their constituting neurons evolved within the animal
kingdom. One important difficulty comes from the lack of examples of intermediate neuronal stages within cur-
rently existing animals. Such examples would bridge the gap between non-neuronal and neuronal configurations.
However, on the one hand there are basic animals like sponges and placozoa who do not have neurons or a
nervous system. On the other hand, even the most basic forms of animals with nervous systems, such as jelly-
fish (cnidarians) and comb-jellies (ctenophores) already exhibit a nervous system built from complete neurons.
So far it is unknown how the three fundamental ingredients of modern neurons—electrical signaling, synapses,
and neuronal elongations—came together in the first neurons and why this happened. Compared to modern
animals, very little is known about the earliest possessors of nervous systems. Essentially modern nervous sys-
tems complete with eyes and a central nerve cord are known from the beginning of the Cambrian period, so
the very origin of nervous systems must predate that period. However, Precambrian animal fossils are enigmatic
and difficult to interpret, providing insufficient information about the behavioural and neuronal makeup of these
organisms. Molecular phylogenetic studies do provide important clues concerning the cellular building blocks
present to these animals but do not allow a clear view of the organization of the animals living in these times.

Computational neuroscience provides an important additional instrument to enhance our understanding of the
neuronal and behavioural mechanisms that were potentially present in very early animals. Modelling very basic
animal configurations, using primitive features such as cell-to-cell signalling that can be assumed to have been
present at this stage, provides a way to assess the behavioural capacities of such configurations. Such modelling
also allows a step by step investigation of potential evolutionary sequences of various proto-neuronal features
and the behavioural effects they induce. All in all, these models provide rigorous thought experiments that enable
a systematic investigation of various (proto-)neuronal features on coordination in a simple body.
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Figure 1: Various degrees of emergent coordination on a larger (32 cells in circumference, 128 in length) worm-
shaped body. Four different experiments, showing 8 frames each: A, lacking elongations; B, 10% of cells ex-
hibiting elongations; C, same as B, but no nearest-neighbour connections between cells lacking elongations; D,
same as B, but with very low transmission speed.
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O21 Community models as the ultimate objective (and success) of computational neuroscience: ex-
empli gratia: The cerebellar Purkinje cell

James Bower⋆

Southern Oregon University, Department of Biology, Ashland, OR, United States

On its main web page, the Organization for Computational Neuroscience (OCNS) defines Computational Neu-
roscience as “the study of brain function in terms of the information processing properties of the structures that
make up the (sic) nervous system”. As nervous systems ARE information processing structures, this defini-
tion begs the question how the field of Computational Neuroscience distinguishes itself from neuroscience as
a whole? The definition of Computational Neuroscience provided by OCNS makes an effort to addresses this
conundrum by further defining CNS as “an interdisciplinary science that links the diverse fields of neuroscience,
cognitive science and psychology with electrical engineering, computer science, mathematics and physics.” In
this presentation, I will propose that THE key concept underlying Computational Neuroscience is, in fact, the
question of ’linkage’. More specifically, I will propose that ’linkage’ should not be an abstract ideal, but instead,
specifically requires the development of computation tools and devices as well as an attitude towards science that
supports the development of “community models” defined as actual mathematical models shared and developed
collaboratively across the community of those interested in a particular neuronal feature or component. While
one can argue that standards for academic advancement and the current publication process favor isolated mod-
els developed by individual research groups which therefore, continue to dominate computational neuroscience,
I will suggest that only shared community models can truly support scientific communication, coordination and
collaboration. Further, of necessity, to be effective I will assert that these community models must be ’realis-
tic’, reflecting the actual physical and physiological structure of the components of the nervous systems being
studied. Not only do community models of this type provide a basis for real collaboration, they also, in effect,
represent the current state of our understanding of neuronal structure / function relationships mathematically. In
this presentation, these assertions will be considered with respect to the development over the last 40 years of a
model of the cerebellar Purkinje cell as one of the first computational models used across multiple laboratories
as well as the historical context provided by the emergence of ’realistic’ community models in Physics in the 16th
century. In a companion submission, I will consider, with several of my long-term colleagues, how the develop-
ment of shared simulation platforms when combined with a new approach to scientific publication can drive the
development and use of community models.
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Figure 1: The first poster created for the CNS meeting, intended to represent the initial somewhat disorganized
state of the field.
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Workshops

Workshops

W1 Methods of Information Theory in Computational Neuroscience

Allen Institute Auditorium, Tue July 17 and Wed July 18, 9:00 to 18:00

Joseph T. Lizier, University of Sydney

Viola Priesemann, Max Planck Institute for Dynamics and Self-organisation

Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University

Lubomir Kostal, Czech Academy of Sciences

Michael Wibral, Goethe University, Frankfurt

Methods originally developed in Information Theory have found wide applicability in computational neuroscience.
Beyond these original methods there is a need to develop novel tools and approaches that are driven by prob-
lems arising in neuroscience. A number of researchers in computational/systems neuroscience and in informa-
tion/communication theory are investigating problems of information representation and processing. While the
goals are often the same, these researchers bring different perspectives and points of view to a common set of
neuroscience problems. Often they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuro-
science and to exchange ideas and present their latest work. The workshop is targeted towards computational
and systems neuroscientists with interest in methods of information theory as well as information/communication
theorists with interest in neuroscience.

Please see our website http://bit.ly/cns2018itw for full abstracts, schedule and additional contributed talks (to be
announced).

Speakers:

• Braden Brinkman (Stony Brook University, New York, US) “Signal-to-noise ratio competes with neural band-
width to shape efficient coding strategies”

• Mireille Conrad (University of Geneva, Geneva, Switzerland) “Mutual information vs. transfer entropy in
spike-based neuroscience”

• Benjamin Cramer (University of Heidelberg, Heidelberg, Germany) “Information theory reveals a diverse
range of states induced by spike timing based learning in neural networks”

• Alexander Dimitrov (Washington State University Vancouver, Vancouver, US) “Modeling of perceptual in-
variances in biological sensory processing”

• Eva Dyer (Georgia Tech, Atlanta, US) “Finding low-dimensional structure in large-scale neural recordings”
• Justin Gardner (Stanford University, Stanford, US) “Optimality and heuristics for human perceptual infer-

ence”
• Jim Kay (University of Glasgow, Glasgow, UK) “Partial Information Decompositions based on Dependency

Constraints”
• Joseph T. Lizier (The University of Sydney, Sydney, Australia) “Pointwise Partial Information Decomposition

Using the Specificity and Ambiguity Lattices”
• Leonardo Novelli (The University of Sydney, Sydney, Australia) “Validation and performance of effective

network inference using multivariate transfer entropy with IDTxl”
• Tatyana Sharpee (Salk Institute for Biological Studies, La Jolla, US) “Information-theoretic constraints on

cortical evolution”
• Nicholas M. Timme (Indiana University, Bloomington, and Purdue University Indianapolis, US) “From neural

cultures to rodent models of disease: examples of information theory analyses of effective connectivity,
computation, and encoding”

• Taro Toyoizumi (RIKEN Brain Science Institute, Tokyo, Japan) “Emergence of Levy Walks from Second-
Order Stochastic Optimization”
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• Siwei Wang (Hebrew University of Jerusalem, Jerusalem, Isreal) “Closing the gap from structure to function
with information theoretic design principles”

• Plus additional contributed talks ...
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W2 Neuronal morphology and structure

Allen Institute 286/287, Tue July 17, 9:00 to 18:00

Alexander Bird, Ernst Strüngmann Institute and FIAS, Frankfurt

André Castro, Ernst Strüngmann Institute and FIAS, Frankfurt

Hermann Cuntz, Ernst Strüngmann Institute and FIAS, Frankfurt

Neurons are complex structures and their morphologies display both great diversity and the potential for re-
markable specificity in function and connectivity. Theoretical neuroscience has always had a key role to play
in analysing neuronal structure, starting with Cajal’s insight that neurons must balance the material and func-
tional costs associated with their dendritic trees. Recent advances in experimental techniques allow us to study
dendrites from new perspectives, but have also created new challenges in reconstruction, quantification, and
comparison. For example, large scale studies of connectivity have reinforced the importance of single cell mor-
phology within microcircuits, whilst an ever-expanding library of genetic and physical manipulations shed new
insights into the processes leading to the development of these morphologies. The goal of the workshop is to
provide a resume of the state-of-the-art in experimental, computational and mathematical investigations into the
morphology of neurons in a variety of systems.

Speakers:

• Uygar Sümbül (Allen Institute, Seattle, USA) “Quantifying neuroanatomy”
• Ruth Benavides-Piccione (Instituto Cajal, Madrid, Spain) “The microanatomy of pyramidal cells”
• Erik De Schutter (OIST, Okinawa, Japan) “The Purkinje cell dendrite causes its unique firing rate-dependent

phase response curve”
• Lida Kanari (EPFL, Lausanne, Switzerland) “Randomness and structure in artificially generated neuronal

networks”
• Kurt Haas (University of British Columbia, Vancouver, Canada) “Dynamic morphometrics: Rapid time-lapse

imaging and quantification of experience-driven dendrite growth”
• Hollis Cline (Scripps Institute, San Diego, USA) “In vivo time-lapse imaging analysis of neuronal structure

and functional plasticity”
• Casey Schneider-Mizell (Allen Institute, Seattle, USA) “The neuroanatomy of connectivity in the Drosophila

larva”
• Staci Sorensen (Allen Institute, Seattle, USA) “Morphological, electrophysiological and transcriptional de-

scriptions of cortical cell types”
• Sophie Laturnus (Universität Tübingen, Tübingen, Germany) “A systematic comparison of neuronal mor-

phology representations for cell type discrimination”
• Hongkui Zeng (Allen Institute, Seattle, USA) “Morphology as a key feature for neuronal cell type classifica-

tion”
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W3 Bridging Spatial and Temporal Scales in Brain Connectomics

MOHAI Microsoft Lakefront Pavilion, Tue July 17, 9:00 to 18:00

Katharina Glomb, Lausanne University Hospital

Joana Cabral, Oxford University

In this workshop we will explore Dynamic Functional Connectivity on different temporal and spatial scales.
We aim to review recent results and put them in perspective to understand common points and discrepancies
across different neuroimaging communities. In particular, we will target the difficulties faced by methodological
approaches when bridging scales due to the differences in how neural dynamics are described.

As an example, similar results about the sources that contribute to dynamic connectivity patterns have been
reported on different scales. On the one hand, there are changes in global coherence, sometimes described as
standing or traveling waves. On the other hand, there are causal interactions between brain regions/neuronal
populations which can be extracted by considering time delays. Ideally, the workshop will help to identify oppor-
tunities that have thus far remained unexplored.

Speakers:

• Amrit Kashyap (Georgia Tech, Atlanta, USA) “Brain dynamics viewed through BOLD, electrophysiology and
computational modeling”

• Joana Cabral (University of Oxford, UK) “Mechanistic network models of MEG and fMRI functional connec-
tivity”

• Louis-David Lord (University of Oxford, UK) “Characterization of the brain’s dynamical repertoire in the
psychedelic state”

• Sebastien Naze (IBM, Thomas J. Watson Research Center, Yorktown Heights, USA) “Sensitivity analysis
of the connectome harmonics and implications in neurodegenerative diseases”

• Jeremie Lefebvre (Krembil Research Institute, Toronto, Canada) “State-Dependent Entrainment of Cortical
Oscillations with Periodic Stimulation”

• Gijs Plomp (University of Fribourg, Switzerland) “Fast directed interactions between brain areas and cortical
layers”

• Petra Ritter (Charite Berlin, Germany), TBA
• Katharina Glomb (CHUV, Lausanne, Switzerland) “Graph signal processing for anatomically constrained

source-reconstructed EEG data”

77



W4 Models for Perceiving and Learning Time Intervals and Rhythms

Allen Institute Training Room, Tue July 17, 9:00 to 18:00

Áine Byrne, New York University

John Rinzel, New York University

Amitabha Bose, New Jersey Institute of Technology

Accurate time estimation is essential for survival, yet the neural bases remain elusive. Time processing has been
widely studied in the context of decision making, language, memory and perception. Research on interval-timing,
for sub to suprasecond scales, ranges from psychophysical experiments and imaging studies to theoretical mod-
els. Beat perception in music is particularly compelling, fast perception and learning of repetitive time intervals
from 100 to 2000 ms. The abilities to recognize and predict rhythms appear inherent to humans. Hypotheses of
neural mechanism involve sensory and motor area interaction (eg, listening and finger-tapping). We will bring
together researchers that are developing models of timing and of prediction with frameworks that include drift-
diffusion, neural resonance, coincidence detection and adapting neuronal oscillator circuits. We seek to promote
discussion and linkage between the timing and prediction fields, both important for understanding beat percep-
tion.

Speakers:

• Jessica Grahn (Western University, Canada) “The role of beat perception in auditory sequence processing”
• Sorinel Oprisan (College of Charleston, USA) “Models of interval timing”
• John Iversen (University of California San Diego, USA) “Audiomotor interactions in beat perception”
• Edward Large (University of Connecticut, USA) “How you got your groove: Modeling rhythm learning, per-

ceptual narrowing, and enculturation”
• Sundeep Teki (University of Oxford, UK) “Contextual representation of time intervals in rhythmic sound

sequences”
• Áine Byrne (New York University, USA) “A neuro-mechanistic model for beat generation”
• Hugo Merchant (National Autonomous University of Mexico, Mexico), “Neural population dynamics in the

primate supplementary motor area during rhythmic tapping”
• Patrick Simen (Oberlin College, USA) “A drift-diffusion model of complex motor timing without a reset

problem”
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W5 Developing, Standardising and Sharing Large Scale Network Simulations

Allen Institute 288/289, Tue July 17, 9:00 to 12:30

Padraig Gleeson, University College London

A number of groups around the world are developing complex, experimentally constrained models of cortical
function. Creating the software infrastructure to develop, simulate and share these types of models takes a
significant amount of time for any of the groups involved and there can be a lot of overlap, duplication in work
and repeated effort.

This workshop aims to highlight some of the initiatives currently underway to build detailed cortical models as well
as those projects building the infrastructure to make it easier to develop, disseminate and compare the models.
Attendees of this workshop will come away with a better idea of the state of the art in large scale cortical model
development and the efforts underway to make these more accessible and reusable for other researchers.

The most recent program for the workshop can be found here:
http://www.opensourcebrain.org/docs/Help/Meetings#CNS_2018

Speakers:

• Anton Arkhipov (Allen Institute, Seattle, USA) and Eilif Muller (Blue Brain Project, Switzerland) “Data-Driven
Modeling of Brain Circuits and the SONATA Data Format’"

• Markus Diesmann and Sacha van Albada (Jülich Research Centre, Germany) “Large scale model devel-
opment from the NEST perspective”

• Salvador Dura-Bernal (SUNY Downstate Medical Center, Brooklyn, NY, USA) “Development of large scale
data-driven network models in NetPyNE, a high-level interface to NEURON”

• Padraig Gleeson (University College London, UK) “Large scale cortical models in NeuroML format on Open
Source Brain”

• Open Discussion: “How best to move forward and what needs of the community are not being met?”
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W6 Neuroscience Gateway and Large Scale Neural Systems Simulations and Tools

Allen Institute 288/289, Tue July 17, 14:00 to 18:00

Amit Majumdar, University of California San Diego

Subhashini Sivagnanam, University of California San Diego

Ted Carnevale, Yale University

Large scale modeling and simulations, using supercomputing resources, are important components of compu-
tational neuroscience. Computational neuroscientists in the US, from the EU Human Brain Project and those
involved with the recently (December, 2017) signed International Brain Initiative depend on High Performance
Computing for research. The US NSF and NIH funded Neuroscience Gateway (NSG) project provides neuronal
tools, pipelines, and libraries optimally implemented on HPC resources for the neuroscience community. NSG
tools and libraries include NEURON, CARLSim, PGENESIS, NEST, Brian, PyNN, MOOSE, BluePyOpt, The Vir-
tual Brain Pipeline, Matlab, EEGLAB, Freesurfer, Human Neocortical Neurosolver etc.; NSG provides tens of
millions of supercomputing hours freely for computational neuroscientists, has over 600 users, and is a platform
for dissemination of computational neuroscience tools. This workshop will bring together some of the developers
of neuronal tools/libraries/pipelines available on NSG and neuroscience users that are using NSG for computa-
tional neuroscience research to discuss both tool development and research results enabled by NSG.

Speakers:

• Subhashini Sivagnanam, Kenneth Yoshimoto, Amit Majumdar (UCSD, La Jolla, CA, USA), Ted Carlevale
(Yale U., New Haven, CT, USA) “Neuroscience Gateway - Enabling Large Scale Simulations and Data
Processing in Neuroscience”

• Robert McDougal (Yale U., New Haven, CT, USA) “Strategies for Parallel NEURON Simulations”
• Ting-Shuo Chou, Hirak J. Kashyap, Jinwei Xing, Stanislav Listopad, Emily L Rounds, Michael Beyeler, Nikil

Dutt, Jeffrey L Krichmar (UCI, Irvine, CA, USA) “CARLsim 4: An Open Source Library for Large Scale,
Biologically Detailed Spiking Neural Network Simulation using Heterogeneous Clusters”

• Alexandre Guet-McCreight, Frances Skinner (Krembil Research Institute, University of Health Network and
University of Toronto, Toronto, ON, Canada) “Using NSG to perform millions of simulations in order to
characterize in vivo-like states for interneurons of the hippocampus”

• Richard C. Gerkin, Russell J Jarvis, Sharon M. Crook (Arizona State University, Tempe, AZ, USA) “Neuro-
nUnit: Tools for data-driven validation of neuron and neural circuit models”

• Vijay Iyer (MathWorks Inc., Boston, MA, USA) “Neuroscience Modeling and Data Processing with Community-
authored MATLAB-based Tools”
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W7 Dynamics of Rhythm Generation

UW Medicine SLU Brotman Auditorium, Tue July 17, 9:00 to 18:00

Gennady Cymbalyuk, Georgia State University

The ability of distinct circuits to generate patterns of rhythmic activity is widespread among vertebrate and in-
vertebrate species. These patterns correspond to different functions like control of different rhythmic movements
and pathological events like seizure episodes. The dynamics of the circuits producing such patterns are based
on the basic principles conserved across phyla. This workshop will investigate roles of interactions of processes
on different time and space scales in attaining the robustness and flexibility, characteristic for living circuits. For
example, we will discuss the roles played by Na+/K+ pump and ion exchangers in generation of functional and
dysfunctional rhythms. We would like to bring together experts applying experimental approaches and the meth-
ods developed in the neuroscience, neurophysics, neuro-informatics, neuroethology, and the bifurcation theory
to determine the basic principles of the transient, intermittent, and steady dynamics of rhythm generation from
different phyla.

Speakers:

• Anatoly Buchin (Allen Institute for Brain Science, Seattle, USA) “Epileptic seizures as pathological oscilla-
tions in neural network and neural mass models”

• Gennady Cymbalyuk (GSU, Atlanta, USA) “Roles of the Na/K pump current in generation of bursting pat-
terns”

• Irene Elices (Universidad Autónoma de Madrid, Madrid, Spain) “Dynamical invariants: cycle-by-cycle rhythm
negotiation”

• Yaroslav Molkov (GSU, Atlanta, USA) “TRP channels and intracellular calcium dynamics in the pre-B’́otzinger
complex”

• Astrid Prinz (Emory University, Atlanta, USA) “Mechanisms for stabilizing rhythm generation”
• Nino Ramirez (Seattle Children’s Hospital, Seattle, USA) “Dynamic mechanisms underlying respiratory

rhythm generation”
• Ilya Rybak (Drexel University, Philadelphia, USA) “Respiratory CPG: Insights from optogenetic and model-

ing studies”
• Yina Wei (Allen Institute for Brain Science, Seattle, USA) “Differentials roles of sleep spindles and sleep

slow oscillations in memory consolidation”
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W8 Insights Gained by Detailed Dendritic Modeling

Allen Institute 540 Lab, Wed July 18, 9:00 to 18:00

Dieter Jaeger, Emory University

Volker Steuber, University of Hertfordshire

Most abstract neural network models operate with single compartment neurons, i.e. without dendrites. In con-
trast, just about all mammalian neurons receive a majority of their synaptic inputs on dendrites. It is becoming
increasingly clear that this is not just to provide more surface area and sample inputs in specific spatial con-
figurations, but that dendrites supply neurons with important non-linear functions. This workshop will highlight
modelling studies that explore the properties of dendritic computations through compartmental modelling. The
distinct dendritic computational properties of different cell types will be highlighted.

Call for Contributed Talks: Open call for contributed short talks to our dendrite workshop - interested potential
attendees please e-mail the organisers with a title and short abstract.

Speakers:

• Dieter Jaeger (Emory University, Atlanta, USA) “Introduction and Globus Pallidus neuron modelling”
• Volker Steuber (University of Hertfordshire, Hatfield, Hertfordshire, UK) “Dendritic morphology and infor-

mation processing in cerebellar neurons”
• Carmen Canavier(LSU Health Sciences Center, New Orleans, LA, USA) “Intrinsic mechanisms of fre-

quency selectivity in proximal dendrites of CA1 Pyramidal neuron”
• Arnd Roth(University College London, UK) “Active dendrites enable strong but sparse inputs to determine

orientation selectivity”
• Alexandra Tran-Van-Minh (Francis Crick Institute, London, UK) “Dendritic properties of cerebellar stellate

cells: information processing with sublinear dendrites”
• Monika Jadi (Yale University, New Haven, USA) “Inhibitory control of non-linear dendritic computations”
• Christof Koch (Allen Institute, WA, USA), “The astonishing diversity of mouse and human cortical dendrites”
• Bill Lytton (SUNY Dowstate Medical Center, NY, USA) “Dendritic plateaus could underlie hierarchical em-

bedded ensembles”
• Avrama Blackwell (George Mason University, VA, USA) “Inhibition enhances spine-specific Calcium encod-

ing of synaptic input patterns”
• Frances Skinner (UHN and Univ. of Toronto, ON, Canada) “How the specifics of dendritic ion channels in

inhibitory cells of the hippocampus could contribute to function”
• Subutai Ahmed (Numenta, Inc., Ca, USA) “The predictive neuron: how active dendrites enable spatiotem-

poral computation in neocortex”
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W9 Integrative Theories of Cortical Function

Allen Institute Training Room, Wed July 18, 9:00 to 18:00

Hamish Meffin, The University of Melbourne

Stefan Mihalas, Allen Institute for Brain Science

Anthony Burkitt, The University of Melbourne

The cerebral cortex is a brain region remarkable in similarity of structure between different mammalian species
and between different areas in a species. This has led to developments of theories that parts of the cortex per-
form a similar set of operations, a dictionary of canonical cortical computations. In recent years, several theories
for what these operations are have been developed. In concert with the theories multiple models have been
developed implementing these proposed computations. This workshop aims to look at what progress has been
made in understanding these local computations, how the global cortex functions arise from them, what experi-
mental evidence can be used to differentiate between model, and what are the general integrative principles. We
plan to foster a dialogue between theoreticians, experimentalists and modelers.

For an up to date list of talks and schedule please see http://www.nvri.org.au/events.php/40/cns2018-workshop-
integrative-theories-of-cortical-function

Speakers:

• Tania Pasternak (U Rochester, USA) “Defining a role for prefrontal cortex in memory-guided sensory com-
parisons”

• Subutai Ahmad (VP Research Numenta, USA) “Locations in the neocortex: A Theory of sensorimotor
prediction using cortical grid cells”

• Anitha Pasupathy (U Washington, USA) “Encoding things and stuff: multiplexed form and texture signals in
primate V4"

• Markus Diesmann (Research Centre Jülich , Germany) “Reusable publication of a cortical multi-area model
at cellular resolution”

• Hamish Meffin (U Melbourne, Australia) “The structure of non-linear receptive fields in cat primary visual
cortex”

• Chang Sun Kim (Chonnam National University, Korea) “Computational implementation of the free energy
principle in the brain”

• Stefan Mihalas (Allen Institute for Brain Science, USA) “Cortical visual systems perform deep integration of
context”

• Christof Koch (Allen Institute for Brain Science, USA) “Cortex as the Physical Substrate of Consciousness”
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W10 How Does Learning Reshape the Dimensionality of Collective Network Activity?

UW Medicine SLU Brotman Auditorium, Wed July 18, 9:00 to 18:00

Rainer Engelken, Columbia University

Guillaume Lajoie, Université de Montréal

Merav Stern, University of Washington

Large neural networks, biological or artificial, can learn complex input-output relations. During learning the net-
work dynamics are often constrained to a low-dimensional manifold despite available high-dimensional space.
The mechanism behind this space dimensionality confinement is yet unclear.

Current technological advances in chronic population recordings and optogenetics provide the tools to measure
and manipulate the reorganization of this state-space structure in neural circuits in awake, behaving animals
during learning.

We will bring together theoreticians and experimentalists to address a most fundamental question in neuro-
science, that is, how learning reshapes collective network activity.

More specifically, we would like to explore:

How does the neural dimensionality of a learned task relate to the task complexity?

Which mathematical tools are suitable to identify low-dimensional neural manifolds and track their emergence
during learning?

How does the dimensionality constrain the learning capabilities?

Speakers:

• SueYeon Chung (Harvard University) “Classification and geometry of neural manifolds, and the application
to deep networks”

• Rainer Engelken (Columbia University) “Dimensionality and entropy rate of spontaneous and evoked neural
rate dynamics”

• Kameron Decker Harris (University of Washington) “Connections between dimensionality and network
sparsity”

• Zack Kilpatrick (University of Colorado Boulder) “Learning continuous attractors in recurrent neural net-
works”

• Guillaume Lajoie (Université de Montréal) “External perturbations modulate coding manifolds and dimen-
sionality of motor cortex activity”

• Luca Mazzucato (Columbia University, University of Oregon) “Changes in effective network coupling medi-
ate learning in a trace fear conditioning task”

• Stefano Recanatesi (University of Washington) “Explaining the dimensionality of the activity in RNNs
through connectivity motifs”

• Merav Stern (University of Washington) “Increased correlations and decreased activity dimensions during
task performance”

• Evelyn Tang (University of Pennsylvania) “Effective learning is accompanied by high dimensional and effi-
cient representations of neural activity”

• Alex Williams (Stanford University) “Dimensionality reduction with single trial resolution”
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W11 Towards New Models for Cognitive Flexibility

Allen Institute 288/289, Wed July 18, 9:00 to 18:00

Rajeev Rikhye, Massachusetts Institute of Technology

Cognitive flexibility is defined as the ability to make different inferences from the same stimulus depending on be-
havioral demands. This essential computation allows us to act intelligently in our dynamically changing environ-
ments. The prefrontal cortex (PFC) has traditionally been the focus of many computational theories of cognitive
flexibility. However, several recent have identified many subcortical areas, such as the mediodorsal thalamus, as
key players in controlling how the cortex flexibly switches between task sets. These new results suggest that the
computations responsible for cognitive flexibility are more distributed and dynamic than previously thought.

In this workshop, we bring together theorists and researchers interested in flexibility at several levels. Our goal is
to develop a unified view of the fundamental neural motifs – both cortical and subcortical – that underlie cognitive
flexibility. We anticipate that this workshop will be of interest to anyone interested in cognitive flexibility and neural
computation.

Speakers:

• Michele Basso (UCLA, US) “The role of the Basal Ganglia and Superior Colliculus in Decision Making”
• Timothy Hanks (UC Davis, US) “Flexibility of timescales of evidence weighting for decisions and confidence”
• Athena Akrami (Princeton University, US) “Role of posterior parietal cortex in mixing past with present

information”
• Camilo Libedinsky (NUS, Singapore) “Heterogeneity in the prevalence of mixed-selectivity among different

sub-regions of the lateral prefrontal cortex”
• Seth Egger (MIT, US) “Internal Models of sensorimotor integration regulate cortical dynamics”
• Nicolas Masse (University of Chicago, US) “TBA"
• Rajeev Rikhye (MIT, US), “Fronto-thalamic substrates of cognitive flexbility”
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Poster Listing

Poster Listing

Saturday Posters
Posters P1 – P145

P1 - P145
P1 MRI2MRI: A fully convolutional deep artificial network algorithm that accurately transforms be-

tween brain MRI contrasts

Ariel Rokem1⋆, Sa Xiao2, Yue Wu2, and Aaron Lee2

1University of Washington, eScience Institute, Seattle, WA, United States
2University of Washington, Department of Ophthalmology, Seattle, WA, United States

P2 Closing the loop between neural network simulators and the OpenAI Gym

Philipp Weidel1⋆, Jakob Jordan2, and Abigail Morrison1

1Juelich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany
2University of Bern, Department of Physiology, Bern, Switzerland

P3 Reproducing polychronization: a guide to maximizing the reproducibility of spiking network
models

Robin Pauli1, Philipp Weidel1⋆, Susanne Kunkel2, and Abigail Morrison1

1Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany
2Norwegian University of Life Sciences, Faculty of Science and Technology, Ås, Norway

P4 Localization of coherent activity based on multi-electrode local field potentials

Robin Pauli⋆, Tom Tetzlaff, and Abigail Morrison

Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P5 Exploring the role of striatal D1-MSNs and D2-MSNs in action selection using a robotic frame-
work

Jyotika Bahuguna⋆, Philipp Weidel, and Abigail Morrison

Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany

P6 Calcium imaging spike deconvolution with minimal parameter tuning and limiting assumptions

Nathan Lee1⋆, Kameron Decker Harris2, and Aleksandr Aravkin1

1University of Washington, Department of Applied Mathematics, Seattle, WA, United States
2University of Washington, Department of Computer Science, Seattle, WA, United States

P7 Applying exact robust PCA to analyze mouse brain activity data

Roman Levin⋆, Merav Stern, Eric Shea-Brown, and Aleksandr Aravkin

University of Washington, Department of Applied Mathematics, Seattle, WA, United States
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P8 A theory of dendritic buckets

Hermann Cuntz1⋆, Alexander Bird2

1Frankfurt Institute for Advanced Studies (FIAS) & Ernst Strüngmann Institute (ESI), Computational Neuroanatomy,
Frankfurt am Main, Germany
2Frankfurt Institute for Advanced Studies (FIAS), Computational Neuroanatomy, Frankfurt am Main, Germany

P9 Predictive information as an organization principle for both sensory and cortical circuitry

Siwei Wang1⋆, Idan Segev1, Stephanie Palmer2, Oren Amsalem1, and Alexander Borst3

1Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel
2University of Chicago, Department of Organismal Biology and Anatomy & Department of Physics, Chicago, IL,
United States
3Max Plack Institute, Department of Neurobiology, Munich, Germany

P10 Distinct roles of anterior cingulate cortex and basolateral amygdala in reinforcement learning
under perceptual uncertainty.

Alexandra Stolyarova1⋆, Megan Peters2, Hakwan Lau1, and Alicia Izquierdo1

1University of California, Los Angeles, Department of Psychology, Los Angeles, CA, United States
2University of California, Riverside, Bioengineering, Riverside, CA, United States

P11 Efficient search with Lévy flights emerges from stochastic optimization

Lukasz Kusmierz⋆, Taro Toyoizumi, and Alireza Gourdarzi

RIKEN Brain Science Institute, Neural Computation and Adaptation, Wako, Japan

P12 A multi-scale data-based network model of lateral inhibition in mouse olfactory bulb

Daniel Zavitz1⋆, Isaac Youngstrom2, Matt Wachowiak2, and Alla Borisyuk1

1University of Utah, Department of Mathematics, Salt Lake City, UT, United States
2University of Utah, Department of Neurobiology & Anatomy, Salt Lake City, UT, United States

P13 Assessing phase-locking and entrainment in oscillatory networks using one-dimensional maps

Casey Diekman, Amitabha Bose⋆

New Jersey Institute of Technology, Department of Mathematical Sciences, Newark, NJ, United States

P14 Functional role of 5-HT1A receptors in serotonergic modulation of active exhalation

William Barnett1⋆, Yaroslav Molkov1, Lucas Koolen2, Adrian Newman-Tancredi3, Mark Varney3, and Ana
Abdala2

1Georgia State University, Department of Mathematics & Statistics, Atlanta, GA, United States
2University of Bristol, School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Faculty, Bristol,
United Kingdom
3Neurolixis Inc, Dana Point, CA, United States

P15 Analyzing how Na+/K+ pump influences the robust bursting activity of half-center oscillator
(HCO) models

Ronald Calabrese, Anca Doloc-Mihu⋆

Emory University, Department of Biology, Atlanta, GA, United States
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P16 Experimental directory structure (Exdir): An alternative to HDF5 without introducing a new file
format

Svenn-Arne Dragly1, Milad Hobbi Mobarhan2, Mikkel Lepperød2, Simen Tennøe3, Gaute Einevoll4⋆,
Marianne Fyhn2, Torkel Hafting5, and Anders Malthe-Sørensen
1University of Oslo, Department of Physics, Oslo, Norway
2University of Oslo, Department of Biosciences, Oslo, Norway
3University of Oslo, Department of Informatics, Oslo, Norway
4Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway
5University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway

P17 A mathematical framework for modeling large scale extracellular electrodiffusion surrounding
morphologically detailed neurons

Gaute Einevoll1, Geir Halnes1⋆, Andreas Solbrå2, Aslak Wigdahl Bergersen3, Jonas van den Brink3,
and Anders Malthe-Sørensen2

1Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway
2University of Oslo, Department of Physics, Oslo, Norway
3Simula Research Laboratory, Fornebu, Norway

P19 Modeling the perceived perils of sodium channel anticonvulsants in Dravet Syndrome

Andrew Knox⋆

University of Wisconsin, Department of Neurology, Madison, WI, United States

P20 Spatial modeling of AMPA receptor trafficking and sorting at the Endosome

Erik De Schutter⋆, Sarah Nagasawa, Iain Hepburn, and Andrew R. Gallimore

Okinawa Institute of Science and Technology, Computational Neuroscience Unit, Onna-Son, Japan

P21 Neural representation of perceptual texture dimensions in macaque area V4

Taekjun Kim⋆, Wyeth Bair, and Anitha Pasupathy

University of Washington, Department of Biological Structure, Seattle, WA, United States

P22 Object encoding in macaque inferior temporal cortex under partial occlusion

Tomoyuki Namima⋆, Anitha Pasupathy

University of Washington, Department of Biological Structure, Seattle, WA, United States

P23 The impact of propagation delay in a Linsker-type network

Catherine Davey⋆, David Grayden, and Anthony Burkitt

University of Melbourne, Department of Biomedical Engineering, Melbourne, Australia

P24 A biologically plausible neural model of visual pathways based on efficient coding

Yanbo Lian1⋆, Hamish Meffin2, David Grayden1, Tatiana Kameneva3, and Anthony Burkitt1

1University of Melbourne, Department of Biomedical Engineering, Melbourne, Australia
2National Vision Research Institute, Carlton, Australia
3University of Melbourne, Electrical and Electronic Engineering, Parkville, Vic, Australia
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P25 Building and simulating a biophysically detailed network model of the mouse primary visual
cortex

Yazan Billeh⋆, Sergey Gratiy, Kael Dai, Ramakrishnan Iyer, Nathan Gouwens, Stefan Mihalas, Christof
Koch, and Anton Arkhipov

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States
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P115 A generalized platform for modeling electric field effects on neuronal dynamics

Aaron Regan Shifman⋆, John Lewis

University of Ottawa, Department of Biology, Ottawa, Canada

P116 Synchronization by uncorrelated noise: interacting rhythms in interconnected neuronal net-
works

Hermann Riecke⋆, John Meng

Northwestern University, Engineering Sciences and Applied Mathematics, Evanston, IL, United States

P117 Classification of morphological and electrophysiological types in mouse visual cortex

Nathan Gouwens⋆, Staci Sorensen, Jim Berg, Changkyu Lee, Tim Jarsky, Jonathan Ting, Michael
Hawrylycz, Anton Arkhipov, Hongkui Zeng, Christof Koch, Susan Sunkin, David Feng, Colin Farrell,
Hanchuan Peng, Ed Lein, Lydia Ng, Amy Bernard, and John Phillips

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P118 Soma-axon coupling configurations that enhance neuronal coincidence detection

Joshua Goldwyn1⋆, Michiel Remme2, and John Rinzel3

1Swarthmore College, Swarthmore, PA, United States
2Humboldt University in Berlin, Institute for Theoretical Biology, Berlin, Germany
3New York University, Center for Neural Science & Courant Institute of Mathematical Sciences, New York, NY,
United States

P119 Short-term plasticity of GABAergic synapses in the Substantia Nigra pars reticulata

Ryan Phillips⋆, Jonathan Rubin

University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States

P120 Simulating pharmacological blockade of persistent sodium currents in respiratory circuits

Ryan Phillips⋆, Jonathan Rubin

University of Pittsburgh, Department of Mathemathics, Pittsburgh, PA, United States

P121 Weak-noise-induced transitions with inhibition and modulation of neural oscillations

Marius Yamakou⋆, Juergen Jost

Max Planck Institute for Mathematics in Sciences, Leipzig, Germany

P122 Randomness and structure in artificially generated neuronal networks

Lida Kanari⋆, Henry Markram, and Julian Shillcock

École Polytechnique Fédérale de Lausanne, Blue Brain Project, Lausanne, Switzerland
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P123 Moving towards the Single Cell Projectome: A multi-modal approach to assessing single-cell
morphology and connectivity for classification of layer 2/3 neurons in mouse V1

Katie Link⋆, Karla Hirokawa, Nile Graddis, Jennifer Whitesell, Bryan MacLennan, Changkyu Lee,
Soumya Chatterjee, Staci Sorensen, and Julie Harris

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P124 Oscillatory and broadband contributions to directed functional connectivity in the human cortex

Julio Chapeton⋆, Sara Inati, and Kareem Zaghloul

National Institutes of Health, NINDS, Bethesda, MD, United States

P125 Facilitatory mechanisms during the encoding of frequency-modulated sweeps in the auditory
pathway

Alejandro Tabas1⋆, Katharina Von Kriegstein2

1Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2Technische Universität Dresden, Faculty of Psychology, Dresden, Germany

P126 A rigorous statistical test supports a new model of homeostatic plasticity

Amanda Hanes⋆, Andrew Koesters, and Kathrin Engisch

Wright State University, Neuroscience, Cell Biology, & Physiology Department, Dayton, OH, United States

P127 Novel approaches to optimize biophysically detailed computational models of single neurons

Roy Ben-Shalom1⋆, Kyung Geun Kim2, and Kevin Bender1

1University of California, San-Francisco, Neurology, Oakland, CA, United States
2University of California, Berkeley, EE/CS, Berkeley, CA, United States

P128 Construction of a biochemically detailed single-compartment model for post-synaptic long-term
potentiation: application to cortical plasticity

Tuomo Mäki-Marttunen1⋆, Andrew G. Edwards1, and Kim T. Blackwell2

1Simula Research Laboratory, Oslo, Norway
2George Mason University, Krasnow Institute for Advanced Study, Fairfax, VA, United States

P129 What is the resistivity of the human brain? Insights from direct electrical stimulation, electrocor-
ticographic recordings of the human cortex, and analytic models

David J. Caldwell1⋆, Jeneva A. Cronin1, Rajesh P. N. Rao2, Andrew L. Ko3, Jeffrey G. Ojemann3, and
Larry B. Sorensen4

1University of Washington, Department of Bioengineering, Seattle, WA, United States
2University of Washington, Computer Science and Engineering, Seattle, WA, United States
3University of Washington, Neurological Surgery, Seattle, WA, United States
4University of Washington, Department of Physics, Seattle, WA, United States

P130 Improvement of computational efficiency of a biochemical plasticity model

Mikko Lehtimäki1⋆, Marja-Leena Linne1, and Lassi Paunonen2

1Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland
2Tampere University of Technology, Mathematics Laboratory, Tampere, Finland
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P131 Modeling traveling wave dynamics in the visual cortex

Lawrence Oprea⋆

McGill University, Physiology, Montreal, Canada

P132 Cusps enable line attractors and graded information channels in neural computation

Zhuocheng Xiao1⋆, Jiwei Zhang2, Andrew Sornborger3, and Louis Tao4

1University of Arizona, Department of Mathematics, Tucson, AZ, United States
2Beijing Computational Science Research Center, Applied and Computational Mathematics, Beijing, China
3Los Alamos National Laboratory, Computer, Computational, and Statistical Sciences (CCS-3), Los Alamos, NM,
United States
4Peking University, Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engi-
neering, Beijing, China

P133 Population vector decoding for optical imaging with fNIRS (functional near-infrared spec-
troscopy)

Nicoladie Tam1⋆, George Zouridakis2, and Luca Pollonini2

1University of North Texas, Department of Biological Sciences, Denton, TX, United States
2University of Houston, Department of Engineering Technology, Houston, TX, United States

P134 Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spa-
tiotemporal response properties of relay cells

Gaute Einevoll1⋆, Milad Hobbi Mobarhan2, Geir Halnes1, Pablo Martinez-Canada3, Torkel Hafting4, and
Marianne Fyhn2

1Norwegian University of Life Sciences, Faculty of Science and Technology, Aas, Norway
2University of Oslo, Department of Biosciences, Oslo, Norway
3University of Granada, Granada, Spain
4University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway

P135 Computational modeling of neuron-astrocyte interactions: Evolution, reproducibility, compara-
bility and future development of models

Tiina Manninen1, Ausra Saudargiene2, Riikka Havela3, and Marja-Leena Linne3⋆

1Tampere University of Technology & Stanford University, Faculty of Biomedical Sciences and Engineering & De-
partment of Neurobiology, Tampere, Finland
2Lithuanian University of Health Sciences & Vytautas Magnus University, Neuroscience Institute & Department of
Informatics, Kaunas, Lithuania
3Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland

P136 Data-driven study of synchronous population activity in generic spiking neuronal networks: How
much do we capture using the minimal model for the considered phenomena?

Jugoslava Acimovic1⋆, Heidi Teppola1, Tuomo Mäki-Marttunen2, and Marja-Leena Linne1

1Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland
2Simula Research Laboratory, Oslo, Norway

P137 Fast gabaergic neurotransmission inhibits diversely AMPA and NMDA receptor mediated net-
work dynamics in cortical cultures: A model-driven experimental study

Heidi Teppola⋆, Jugoslava Acimovic, and Marja-Leena Linne

Tampere University of Technology, Faculty of Biomedical Sciences and Engineering, Tampere, Finland
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P138 A neural mass model to predict electrical stimulation evoked responses in human brain

Ishita Basu1⋆, Britni Crocker1, Kara Farnes1, Madeline Robertson1, Angelique Paulk1, Darin
Dougherty1, Sydney Cash1, Emad Eskandar1, Alik Widge1, and Mark Kramer2

1Massachusetts General Hospital, MA, United States
2Boston University, Mathematical Neuroscience, Boston, MA, United States

P139 Missing data for an electrodiagnostic nerve test

James Bell1⋆, Kelvin Jones2, and Martha White3

1University of Alberta, Departments of Neuroscience and Computing Science, Edmonton, Canada
2University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Canada
3University of Alberta, Department of Computing Science, Edmonton, Canada

P140 Neural model of the multi-stable dynamics of the perception of body motion

Leonid Fedorov1⋆, Tjeerd Dijkstra2, Louisa Sting3, Howard Hock4, and Martin Giese5

1International Max Planck Research School for Cognitive and Systems Neuroscience, Tuebingen, Germany
2University of Tuebingen, Dept of Cognitive Neurology, Tuebingen, Germany
3University of Tuebingen, GTC & International Max Planck Research School, Tuebingen, Germany
4Florida Atlantic University, Center for Complex Systems and the Brain Sciences, Boca Raton, FL, United States
5Center for Integrative Neuroscience & University Clinic Tuebingen, Dept of Cognitive Neurology, Tuebingen, Ger-
many

P141 Detecting and classifying neocortical population codes via deep artificial neural networks

Christopher Endemann⋆, Matthew Banks

University of Wisconsin, Department of Anesthesiology, Madison, WI, United States

P142 Blind recovery of transient responses with higher-order spectra

Christopher Kovach1⋆, Hiroto Kawasaki2, and Matthew Howard2

1University of Iowa, Caltech, Iowa City, IA, United States
2University of Iowa Hospitals and Clinics, Neurosurgery, Iowa City, IA, United States

P143 Early spontaneous activity predicts structural changes in layout of orientation domains during
early development

Bettina Hein1⋆, Sigrid Trägenap1, David Whitney2, Gordon Smith3, David Fitzpatrick2, and Matthias
Kaschube1

1FIAS, Department of Neuroscience, Frankfurt, Germany
2Max Planck Florida Institute, Department of Neuroscience, Jupiter, FL, United States
3University of Minnesota, Department of Neuroscience, Minneapolis, MN, United States

P144 Multispike Tempotron performance under different task-related neural spiking statistics

Hannes Rapp1⋆, Martin Paul Nawrot2, and Merav Stern3

1University of Cologne, Computational Systems Neuroscience/Animal Physiology, Cologne, Germany
2University of Cologne, Zoological Institute, Germany
3University of Washington, Applied Mathematics, Seattle, WA, United States

P145 Modeling mouse visual cortex

Michael Oliver⋆, Gabriel Ocker, Peter Ledochowitsch, Nicholas Cain, Saskia E. J. de Vries, and Michael
A. Buice

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States
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P146 - P287P146 On the correspondence between receptive fields derived from spikes versus calcium

Peter Ledochowitsch1⋆, Nicholas Cain1, Joshua Siegle1, Xiaoxuan Jia2, Michael Oliver1, Ulf Knoblich3,
Lawrence Huang3, Brian Hu1, Gabriel Ocker1, Daniel Millman1, Séverine Durand1, Ramakrishnan Iyer1,
Lu Li3, Shawn Olsen1, R Clay Reid1, Hongkui Zeng1, Stefan Mihalas1, Saskia E. J. de Vries1, and
Michael A. Buice1

1Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States
2Allen Institute for Brain Science, Neural Coding, Seattle, WA, United States
3Allen Institute for Brain Science, Celltypes, Seattle, WA, United States

P147 The structure of population activity and coding in mouse visual cortex.

Gabriel Ocker⋆, Peter Ledochowitsch, Daniel Millman, Michael Oliver, Nicholas Cain, Saskia E. J. de
Vries, and Michael A. Buice

Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P148 Online biologically plausible decoding of clusters in retinal population activity

Adrianna Loback⋆, Michael Berry

Princeton University, Department of Neuroscience, Princeton, NJ, United States

P149 Towards a computational account of theta band (4-8 Hz) power modulation in the subthalamic
nucleus during response conflict condition.

Prannath Moolchand1⋆, Stephanie Jones1, and Michael Frank2

1Brown University, Department of Neuroscience, Providence, RI, United States
2Brown University, Department of Cognitive, Linguistic & Psychological Sciences, Providence, RI, United States

P150 Mediodorsal thalamus permits cognitive flexibility by suppressing conflicting prefrontal repre-
sentations

Rajeev Rikhye⋆, Ralf Wimmer, and Michael Halassa

Massachusetts Institute of Technology, Brain and Cognitive Sciences, Cambridge, MA, United States

P151 Long memory in dynamic recurrent networks

Peter Stratton⋆, Michael Halassa

Massachusetts Institute of Technology, Brain and Cognitive Sciences, Cambridge, MA, United States

P152 Stimulus-dependent tuning in cortical area MST of macaques

Alicia Costalago Meruelo1⋆, Stefan Glasauer1, Lukas Brostek1, and Michael J Mustari2

1Ludwig-Maximilians-Universität München, Dept of Neurology, Munchen, Germany
2University of Washington, Washington Primate Research Center, Seattle, WA, United States
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P153 Validation and performance of effective network inference using multivariate transfer entropy
with IDTxl

Leonardo Novelli1⋆, Patricia Wollstadt2, Pedro A. M. Mediano3, Joseph Lizier1, and Michael Wibral2

1The University of Sydney, Centre for Complex Systems, Sydney, Australia
2Goethe University Frankfurt, MEG Unit, Brain Imaging Centre, Frankfurt am Main, Germany
3Imperial College London, Department of Computing, London, United Kingdom

P154 Generative models on accelerated neuromorphic hardware

Akos Ferenc Kungl1⋆, Karlheinz Meier1, Sebastian Schmitt1, Johann Klahn1, Paul Muller1, Andreas
Baumbach1, Dominik Dold1, Alexander Kugele1, Eric Muller2, Christoph Koke1, Mitja Kleider1, Christian
Mauch1, Oliver Breitwieser1, Maurice Guttler1, Dan Husmann1, Kai Husmann1, Andreas Hartel1, Vitali
Karasenko1, and Andreas Grubl1

1Heidelberg University, Kirchhoff Institute for Physics, Heidelberg, Germany
2Kirchhoff Institute for Physics, Heidelberg University - Department for Physics and Astronomy, Germany
3Heidelberg University & University Bern, Kirchhoff Institute for Physics & Department of Physiology, Switzerland

P155 Modeling rhythmic control of brain sequential dynamics

Roberto Latorre1, Pablo Varona1⋆, and Mikhail I. Rabinovich2

1Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain
2University of California, San Diego, BioCircuits Institute, La Jolla, CA, United States

P156 An excitation / inhibition ratio impacts on organization of neural connectivity and information
transfer

Motohiro Ogura⋆, Jihoon Park, Yuji Kawai, and Minoru Asada

Osaka University, Suita, Osaka, Japan

P157 Intrinsically bursting neurons enlarge timescales of fluctuations in firing rates

Tomohiro Miki⋆, Yuji Kawai, Jihoon Park, and Minoru Asada

Osaka University, Suita, Osaka, Japan

P158 Acetylcholine modulation in a biophysical model of cortical neuron

Vinícius Cordeiro1⋆, Parviz Ghaderi2, Sareh Rostami2, Rodrigo F. O. Pena1, Renan O. Shimoura1, An-
tônio C. Roque1, and Mir Shahram Safari2

1University of São Paulo, Department of Physics, Ribeirão Preto, Brazil
2Shahid Beheshti University of Medical Science, Neuroscience Research Center, Tehran, Islamic Republic of Iran

P159 Anesthesia modifies subthreshold critical slowing in a stochastic Hodgkin-Huxley neuron ex-
posed to inhibitory synaptic noise

Alex Bukoski1⋆, D Alistair Steyn-Ross2, Ashley Pickett3, and Moira L Steyn-Ross2

1University of Missouri, Columbia, MO, United States
2University of Waikato, School of Engineering, Hamilton, New Zealand
3Auburn University, College of Veterinary Medicine, Auburn, AL, United States

P160 Identifying ’influential seizers’ in a network model of focal epilepsy

Christian Fink⋆, Joe Emerson, and Momi Afelin

Wesleyan University, Physics and Neuroscience, Delaware, OH, United States
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P161 Rich dynamical repertoire in the balanced state

David Dahmen⋆, Lukas Deutz, and Moritz Helias

Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Juelich, Germany

P163 Prefrontal oscillations bias pathways for thought and action

Jason Sherfey1⋆, Joachim Hass2, Salva Ardid3, Michael Hasselmo1, and Nancy Kopell3

1Boston University, Psychological and Brain Sciences, Boston, MA, United States
2Central Institute of Mental Health, BCCN Heidelberg-Mannheim, Mannheim, Germany
3Boston University, Mathematics and Statistics, Boston, MA, United States

P164 From single neurons to perception: Examining the basis for sensory deficits in autism

Rashid Williams-Garcia1⋆, G. Bard Ermentrout2, and Nathan Urban3

1University of Pittsburgh, Department of Neurobiology & Department of Mathematics, Pittsburgh, PA, United States
2University of Pittsburgh, Department of Mathematics, Pittsburgh, PA, United States
3University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, United States

P165 Cortical information integration with critical subnetworks: Large capacity, high accuracy, and
rapid detection.

Maik Schünemann⋆, Udo Ernst, and Nergis Tomen

University of Bremen, Institute for Theoretical Physics, Bremen, Germany

P166 Neuroscience gateway: Enabling large scale simulations and data processing and dissemination
of neuroscience tools/software

Amitava Majumdar1⋆, Subhashini Sivagnanam1, Kenneth Yoshimoto1, and Nicholas Carnevale2

1University of California, San Diego, San Diego Supercomputer Center, La Jolla, CA, United States
2Yale University, Neuroscience, New Haven, CT, United States

P167 Computational model of the conditional probability of decision-making process as an optimiza-
tion process

Nicoladie Tam⋆

University of North Texas, Department of Biological Sciences, Denton, TX, United States

P168 PyRates - A Python framework for rate-based neural simulations

Richard Gast⋆, Thomas Knoesche, Daniel Rose, Harald Möller, and Nikolaus Weiskopf

MPI for Human Cognitive and Brain Sciences, Department of Neurophysics, Leipzig, Germany

P169 A stochastic model of single serotonergic fibers

Skirmantas Janusonis1⋆, Bangalore Manjunath2, and Nils-Christian Detering3

1University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, CA,
United States
2University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, CA,
United States
3University of California, Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA,
United States
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P170 Neural model for the recognition of agency and social interaction from abstract stimuli

Mohammad Hovaidi Ardestani1, Martin Giese2⋆, and Nitin Saini2

1University Clinic Tübingen, Tübingen, Germany
2Center for Integrative Neuroscience & University Clinic Tübingen, Dept of Cogniitive Neurology, Germany

P171 Learning oscillatory brain dynamics: van der Pol meets LSTM

Germán Abrevaya1, Aleksandr Aravkin2⋆, Guillermo Cecchi3, Irina Rish3, Silvina Dawson4, and Pablo
Polosecki3

1Universidad de Buenos Aires & CONICET, Departamento de Física, FCEyN and IFIBA, Buenos Aires, Argentina
2University of Washington, Department of Applied Mathematics, Seattle, WA, United States
3IBM TJ Watson Research Center, Yorktown Heights, United States
4University of Buenos Aires, Departamento de Física, FCEyN, UBA and IFIBA, Buenos Aires, Argentina

P172 A cross-platform real-time model library to build hybrid neural circuits

Rodrigo Amaducci, Manuel Reyes-Sanchez, Irene Elices Ocon, Francisco B Rodriguez, and Pablo
Varona⋆

Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain

P173 Unveiling and characterizing dynamical invariants in central pattern generators

Irene Elices Ocon1⋆, Manuel Reyes-Sanchez1, Rodrigo Amaducci1, Rafael Levi2, Francisco B Ro-
driguez1, and Pablo Varona1

1Universidad Autónoma Madrid, Ingeniería Informática, Madrid, Spain
2University of Southern California, Department of Biological Sciences, Los Angeles, CA, United States

P174 Point process-based dynamic functional connectivity with source-reconstructed EEG data

Katharina Glomb1⋆, David Pascucci2, Sebastien Tourbier1, Margherita Carboni3, Maria Rubega4, Serge
Vulliemoz3, Gijs Plomp2, and Patric Hagmann1

1CHUV, Department of Radiology, Lausanne, Switzerland
2University of Fribourg, Department of Psychology, Fribourg, Switzerland
3University Hospital of Geneva & University of Geneva, Department of Fundamental Neurosciences, Geneva,
Switzerland
4University of Geneva, Department of Fundamental Neurosciences, Geneva, Switzerland

P175 Modeling the spatial inhomogeneous degradation of nitric oxide shows a key role of anatomi-
cally localized NO production

William Haselden⋆, Ravi Kedarasetti, and Patrick Drew

Pennsylvania State University, Engineering Science and Mechanics, State College, PA, United States

P176 A Bayesian, biophysical framework for spike sorting

Kevin Lin⋆, Patrick Greene

University of Arizona, Department of Applied Mathematics, Tucson, AZ, United States

P177 A detailed model of the hippocampal formation for the generation of Sharp-Wave Ripples and
Theta-nested Gamma oscillations

Amelie Aussel1⋆, Radu Ranta1, Laure Buhry1, Louise Tyvaert2, and Patrick Henaff1

1Université de Lorraine, CRAN UMR 7039, Nancy, France
2University Hospital (CHU) Nancy, Nancy, France
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P178 A mechanistic model explains auditory evoked responses as a reflection of network properties
of the entire auditory cortex

Artur Matysiak1⋆, Aida Hajizadeh1, Nina Härtwich1, Reinhard König1, and Patrick May2

1Leibniz Institute for Neurobiology, Special Lab for Non-Invasive Brain Imaging, Magdeburg, Germany
2Lancaster University, Department of Psychology, Lancaster, United Kingdom

P179 Noisy deep networks with short-term plasticity make similar errors as mice in a detection of
change task

Jiaqi Shang1, Brian Hu2⋆, Shawn Olsen2, Stefan Mihalas2, Doug Ollerenshaw2, Marina Garrett2, Justin
Kiggins2, and Peter Groblewski2

1Northwestern University, Northwestern University, Evanston, IL, United States
2Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States

P180 Statistical properties of strengths of structural and functional connectivity

Xiao Gao⋆, Peter Robinson

The University of Sydney, School of Physics, Sydney, Australia

P181 Plasticity of information coding by cerebellar Purkinje cells during sensorimotor learning

Sungho Hong1⋆, Erik De Schutter1, Akshay Markanday2, Ayaka Usui3, and Peter Thier2

1Okinawa Institute of Science and Technology, Computational Neuroscience Unit, Okinawa, Japan
2University of Tübingen, Hertie Institute for Clinical Brain Research, Department of Cognitive Neurology, Tübingen,
Germany
3Okinawa Institute of Science and Technology, Quantum Systems Unit, Okinawa, Japan

P182 A systematic comparison of neural morphology representations in the context of cell type dis-
crimination

Sophie Laturnus⋆, Ziwei Huang, and Philipp Berens

Institute of Ophthalmic Research, Neural Data Science for Vision Research, Tuebingen, Germany

P183 Online accurate spike sorting for hundreds of channels

Baptiste Lefebvre, Olivier Marre, and Pierre Yger⋆

Institut De La Vision, Computational Neuroscience, Paris, France

P184 Time step sensitivity in large scale compartmental models of the neocortex

Joshua Crone1, David Boothe1, Alfred Yu2, Kelvin Oie2, and Piotr Franaszczuk2⋆

1U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground,
MD, United States
2U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD,
United States

P185 Electrical coupling of perisomatic and distal apical regions of a layer 5 pyramidal neuron com-
partmental model

Melvin Felton1, Alfred Yu2, David Boothe1, Kelvin Oie2, and Piotr Franaszczuk2⋆

1U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground,
MD, United States
2U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD,
MD, United States
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P186 Impact of small world connectivity on a multi-region model of cerebral cortex

David Boothe1⋆, Alfred Yu2, Kelvin Oie2, and Piotr Franaszczuk2

1U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground,
MD, United States
2U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD,
MD, United States

P187 Transcranial direct current stimulation (tDCS) is impacted by neuronal morphology and spatial
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Alfred Yu1, David Boothe2⋆, Kelvin Oie1, and Piotr Franaszczuk1

1U.S. Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD,
United States
2U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Aberdeen Proving Ground,
MD, United States

P188 Simulating extracellular signatures of action potentials using single compartment neurons and
geometrical filtering

Harry Tran⋆, Steven Le Cam, Valérie Louis Dorr, and Radu Ranta

Université de Lorraine, CRAN UMR 7039, Nancy, France

P189 Learning the payoffs and costs of actions

Moritz Moeller⋆, Rafal Bogacz

University of Oxford, Nuffield Department of Clinical Neurosciences, Oxford, United Kingdom

P190 A network of intrinsic oscillators can drive forward locomotion in C. elegans

Erick Olivares⋆, Eduardo Izquierdo, and Randall Beer

Indiana University, Cognitive Science Program, School of Informatics and Computing, Bloomington, IN, United
States

P191 Computational validation of a closed loop neuromorphic controller for ventilatory control

Ricardo Siu1⋆, James Abbas2, Brian Hillen1, Sylvie Renaud3, and Ranu Jung1

1Florida International University, Biomedical Engineering, Miami, FL, United States
2Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, United States
3Université de Bordeaux, IMS Laboratoire – Bordeaux INP, Talence, France

P192 Modeling the altered function of canonical feedback inhibitory circuits in chronic epilepsy

Christian Klos1⋆, Leonie Pothmann2, Oihane Horno3, Oliver Braganza2, Heinz Beck2, and Raoul-Martin
Memmesheimer1

1University of Bonn, Neural Network Dynamics and Computation, Institute of Genetics, Bonn, Germany
2University of Bonn, Laboratory for Experimental Epileptology and Cognition Research, Department of Epileptology,
Bonn, Germany
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P193 Investigating impact of synaptic inputs in seizure models

Cengiz Gunay⋆, Reuben Massaquoi

Georgia Gwinnett College, School of Science and Technology, Lawrenceville, GA, United States
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P194 Fundamental neuromechanical components of robust forward locomotion in C. Elegans

Carter Johnson⋆, Timothy Lewis, and Robert Guy

University of California, Davis, Department of Applied Mathematics, Davis, CA, United States

P195 A reservoir computing model of motor learning with parallel cortical and basal ganglia pathways

Ryan Pyle⋆, Robert Rosenbaum

University of Notre Dame, Applied and Computational Mathematics and Statistics, South Bend, IN, United States

P196 Dynamic features of neural responses to triplet-streaming simulated by integrate-and-fire net-
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Aarati Mahat, Rodica Curtu⋆

University of Iowa, Department of Mathemathics, Iowa City, IA, United States

P197 Reduction of conductance-based neuron models for neuromodulation studies

Tomas van Pottelbergh⋆, Rodolphe Sepulchre

University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P198 System identification of neuronal dynamics

Thiago Burghi⋆, Rodolphe Sepulchre

University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P199 Neuromorphic hyperpolarized bursting
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University of Cambridge, Department of Engineering, Cambridge, United Kingdom

P200 Robust regulation of neuronal dynamics by the Na/K pump

Gennady Cymbalyuk1⋆, Christian Erxleben2, Angela Wenning-Erxleben2, and Ronald Calabrese2

1Georgia State University, Neuroscience Institute, Atlanta, GA, United States
2Emory University, Department of Biology, Atlanta, GA, United States

P201 Gender differences in intrinsic oscillations of the resting brain following brief mindfulness inter-
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Yi-Yuan Tang1⋆, Rongxiang Tang2

1Texas Tech University, Lubbock, TX, United States
2Washington University in St. Louis, Psychological and Brain Sciences, St. Louis, WA, United States

P202 Tonic-to-bursting transitions in synchronous gap junction coupled neurons

Epaminondas Rosa⋆, Rosangela Follmann

Illinois State University, School of Information Technology, Normal, IL, United States
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P203 Resting-state dynamics in a large-scale spiking model of the visual areas of macaque cortex

Maximilian Schmidt1, Rembrandt Bakker2, Kelly Shen3, Gleb Bezgin4, Claus Hilgetag5, Markus Dies-
mann6, and Sacha J. van Albada7⋆

1RIKEN Brain Science Institute, Wako-shi, Germany
2Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
3Baycrest, Rotman Research Institute, Toronto, Canada
4McGill University, McConnell Brain Imaging Centre, Montreal, Canada
5University Medical Center Eppendorf, Department of Computational Neuroscience, Hamburg, Germany
6Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6) & Institute for Advanced Simulation (IAS-
6), Juelich, Germany
7Jülich Research Centre, Institute for Advanced Simulation (IAS-6), Juelich, Germany
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1University of Washington, Department of Applied Mathematics, Seattle, WA, United States
2Allen Institute for Brain Science, Modelling, Analysis and Theory, Seattle, WA, United States
3University of California, San Francisco, School of Medicine, San Francisco, CA, United States
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Jȩdzejewska-Szmek, Joanna. . . . . . . . . . . . . . . . . . . .94
Jaeger, Dieter . . . . . . . . . . . . . . . . . . . . . . . . . . 35, 82, 114
Jain, Mika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Jang, Jaeson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Janusonis, Skirmantas . . . . . . . . . . . . . . . . . . . . . . . . . 108
Jarsky, Tim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 119
Jarvis, Russell J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Jedlicka, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 68
Jezzini, Ahmad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Jia, Xiaoxuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106, 115
Jiang, Chun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Jimenez, Silvia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Jirsa, Viktor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Johnson, Carter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Johnson, Sarah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Jones, Kelvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Jones, Stephanie . . . . . . . . . . . . . . . . . . . . . . . . . 106, 117
Jordan, Jakob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Jost, Juergen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Jung, Kyesam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Jung, Ranu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Jung, Suh Woo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Juusola, Mikko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

K
König, Reinhard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Kahl, Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Kali, Szabolcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Kameneva, Tatiana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Kamiji, Nilton Liuji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Kanari, Lida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95, 102
Kang, Jiyoung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Kang, Louis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 65
Kaplan, David. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Karasenko, Vitali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Kareken, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Kaschube, Matthias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Kashimori, Yoshiki . . . . . . . . . . . . . . . . . . . . . . . . 115, 123
Kassegne, Sam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Kawai, Yuji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Kawasaki, Hiroto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Kedarasetti, Ravi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Keijzer, Fred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32, 70
Keine, Christian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Khan, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Khorasani, Abed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Kiggins, Justin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Kim, Chang Sub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Kim, Chang-Eop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Kim, Jimin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Kim, Kyung Geun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Kim, Sang Seong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Kim, Taegyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Kim, Taekjun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
King, James . . . . . . . . . . . . . . . . . . . . . . . . . 32, 67, 94, 95
Klahn, Johann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Kleider, Mitja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Klijn, Wouter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Klos, Christian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Knight, James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Knoblich, Ulf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Knoesche, Thomas . . . . . . . . . . . . . . . . . . . . . . . 108, 118
Knox, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Knox, Joseph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Ko, Andrew L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Koay, Sue-Ann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 46
Koch, Christof . . . . . . . . . . . . . . . . . . . . . . 30, 56, 91, 102
Koesters, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Koke, Christoph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Koolen, Lucas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Kopell, Nancy . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 45, 108
Korogod, Sergiy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Kortus, Stepan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Kostal, Lubomir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 74
Koumura, Takuya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Kovach, Christopher . . . . . . . . . . . . . . . . . . . .30, 58, 105
Kowalska, Marta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Kozloski, James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

128



Kramer, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Krichmar, Jeffrey L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Kringelbach, Morten . . . . . . . . . . . . . . . . . . . . . . . . .30, 57
Kuebler, Eric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Kugele, Alexander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Kumbhar, Pramod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Kungl, Akos Ferenc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Kunkel, Susanne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Kusmierz, Lukasz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Kutz, J. Nathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 63

L
La Camera, Giancarlo . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Lajoie, Guillaume. . . . . . . . . . . . . . . . . . . . . . . . . . . .35, 84
Lambert, Philippe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Lankarany, Milad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Lapish, Christopher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Latash, Elizaveta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Latorre, Roberto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Laturnus, Sophie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Lau, Hakwan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Lavin, Antonieta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Law, Robert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Lawrence, J. Josh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Lazar, Aurel A. . . . . . . . . . . . . . . . . . . . . . . . . . 31, 48, 122
Le Cam, Steven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Ledochowitsch, Peter . . . . . . . . . . . . . 30, 56, 105, 106
Lee, Aaron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Lee, Changkyu . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 103
Lee, Hyeonsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Lee, Jung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Lee, Nathan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Lee, Shane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Lee, Soo Yeun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Lefebvre, Baptiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Lefebvre, Jeremie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Legaspi, Roberto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Lehtimäki, Mikko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Lein, Ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Lepperød, Mikkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Levenstein, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . .31, 62
Levi, Rafael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Levin, Roman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Lewis, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Lewis, Timothy. . . . . . . . . . . . . . . . . . . . . . . . . . . .112, 119
Li, Adam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Li, Ang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Li, Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Li, Ye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Li, Yinyun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Lian, Yanbo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Lin, Kevin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 123
Lindner, Benjamin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Lindsey, Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99, 117
Link, Katie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Linne, Marja-Leena . . . . . . . . . . . . . . . . . . . . . . . 103, 104
Linsenbardt, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Liu, Pei Hsien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Lizier, Joseph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Lizier, Joseph T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 74
Lo, Chung-Chuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Loback, Adrianna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Lopez-Hazas, Jessica . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Lord, Louis-David . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 57
Louis Dorr, Valérie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Luebke, Jennifer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Lytton, William . . . . . . . . . . 28, 38, 113, 117, 120, 121

M
Mäki-Marttunen, Tuomo. . . . . . . . . . . . . . . . . . .103, 104
Möller, Harald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
MacLaurin, James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
MacLennan, Bryan. . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Maess, Burkhard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Mahan, Margaret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Mahat, Aarati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Majumdar, Amit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 80
Majumdar, Amitava . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Maksymchuk, Natalia . . . . . . . . . . . . . . . . . . . . 32, 64, 97
Malthe-Sørensen, Anders . . . . . . . . . . . . . . . . . . . . . . . 90
Manavi, Sahar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Manjunath, Bangalore . . . . . . . . . . . . . . . . . . . . . . . . . 108
Mann, Rusty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Manninen, Tiina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Maran, Selva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Marder, Eve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 45
Markanday, Akshay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Markin, Sergey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Markram, Henry . . . . . . . . . . . 32, 67, 94, 95, 102, 114
Marre, Olivier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Marsalek, Petr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Marshall, James A. R. . . . . . . . . . . . . . . . . . . . . . . . . . 100
Martinez-Canada, Pablo . . . . . . . . . . . . . . . . . . . . . . . 104
Massaquoi, Reuben . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Matveev, Victor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Matysiak, Artur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Mauch, Christian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
May, Patrick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Maybank, Philip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Mazzucato, Luca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
McDougal, Robert . . . . . . . . . . . . . . . . . . . . . .28, 38, 121
McKinnon, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Mediano, Pedro A. M. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Meffin, Hamish . . . . . . . . . . . . . . . . . . . . . . 35, 83, 90, 94
Meier, Karlheinz . . . . . . . . . . . . . . . . . . . . . . . . . . 107, 120
Memmesheimer, Raoul-Martin . . . . . . . . . . . . . . . . . 111
Meng, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Menon, Shakti N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Mesa, Natalia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Metzner, Christoph. . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Migliore, Michele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Mihalas, Stefan . . 35, 83, 91, 96, 106, 110, 117, 119
Miki, Shuntaro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Miki, Tomohiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Miko, Rebecca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Millman, Daniel. . . . . . . . . . . . . . . . . . . . . . . . .30, 56, 106

129



Mimica, Bartul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Mirzakhalili, Ehsan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Moeller, Moritz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Molkov, Yaroslav . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 122
Monfared, Omid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Mongillo, Gianluigi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Montero, Aaron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Moolchand, Prannath . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Moore, Christopher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Moore, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Moritz, Chet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Morrison, Abigail . . . . . . . . . . . . . . . . . . . . . . . . . . . 88, 113
Mukta, Kamrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Muller, Eilif . . . . . . . . . . . . . . . . . . . . . . . . . . .32, 67, 94, 95
Muller, Eric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Muller, Lyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 61
Muller, Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Munro Krull, Erin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Muresan, Raul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Muscinelli, Samuel . . . . . . . . . . . . . . . . . . . . . . . .121, 122
Mustari, Michael J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

N
Næss, Solveig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Nachbauer, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Nagasawa, Sarah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Najman, Fernando . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Namima, Tomoyuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Nandi, Anirban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Nanduri, Devyani. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Nawrot, Martin Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Naze, Sebastien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Neftci, Emre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Nesic, Dragan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Ness, Torbjørn V . . . . . . . . . . . . . . . . . . . . . . 97, 116, 119
Newman-Tancredi, Adrian . . . . . . . . . . . . . . . . . . . . . . . 89
Newton, Adam J. H.. . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Newton, Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 67, 94
Neymotin, Samuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ng, Lydia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Nolte, Max . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 67, 94, 95
Novelli, Leonardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Novikov, Nikita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Nowotny, Thomas. . . . . . . . . . . . . . . . . . . . . . . . .100, 119
Nykamp, Duane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

O
O’Reilly, Christian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Ocker, Gabriel . . . . . . . . . . . . . 30, 56, 96, 97, 105, 106
Oganian, Yulia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Ogura, Motohiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Oh, Jihong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Oh, Jinyoung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Oie, Kelvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110, 111
Ojemann, Jeffrey G. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Olcese, Riccardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Olivares, Erick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Oliver, Michael . . . . . . . . . . . . . . . . . . . . 30, 56, 105, 106
Ollerenshaw, Doug. . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Olsen, Shawn. . . . . . . . . . . . . . .94, 106, 110, 113, 115
Ombao, Hernando . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Oprea, Lawrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Oprisan, Sorinel . . . . . . . . . . . . . . . . . . . . . . . . 91, 93, 117
Oswood, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

P
Paik, Se-Bum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Pala, Aurélie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Palmer, Stephanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Pantazis, Antonios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Park, Hae-Jeong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Park, Jihoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Park, Youngjin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Pascucci, David. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Pasupathy, Anitha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Patel, Atit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32, 64
Pathak, Anand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Pauli, Robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Paulk, Angelique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Paunonen, Lassi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Pawelzik, Klaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 50
Pearl, Phillip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30, 55
Pena, Rodrigo F. O. . . . . . . . . . . . . . . . . . . . . . . . . 91, 107
Peng, Hanchuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Perez Nieves, Nicolas . . . . . . . . . . . . . . . . . . . . . . . 32, 67
Perin, Rodrigo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Peters, Megan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Petrou, Steven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Peyser, Alexander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Pham, Tuan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Philippides, Andrew O. . . . . . . . . . . . . . . . . . . . . . . . . . 100
Phillips, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Phillips, Ryan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Phyo, Ngwe Sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Pickett, Ashley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Plomp, Gijs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Pollonini, Luca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Polosecki, Pablo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Pothmann, Leonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Povolotskiy, Arseny. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Powell, Sean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Pozzorini, Christian. . . . . . . . . . . . . . . . . . . . . . . . . .32, 67
Prescott, Steve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Priesemann, Viola. . . . . . . . . . . . . . . . . . . . . .34, 74, 120
Prilutsky, Boris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Prinz, Astrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Proix, Timothée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Purdy, Scott. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Pyle, Ryan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Q
Qiu, Siwei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Quaglio, Pietro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Quintana, Adrian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

R
Rössert, Christian A . . . . . . . . . . . . . . . . 32, 67, 95, 114
Rabinovich, Mikhail I. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

130



Raghavan, Janaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Ramaswamy, Srikanth . . . . . . . . . . . . . . . . . . . 32, 67, 95
Ranta, Radu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 111
Rao, Rajesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 44
Rao, Rajesh P. N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Rapp, Hannes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Ratté, Stephanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Recanatesi, Stefano. . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Reid, R Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 56, 106
Reimann, Michael . . . . . . . . . . . . . . . . . . . 32, 67, 94, 95
Reimers, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Remme, Michiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Ren, Naixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Renaud, Sylvie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Reyes-Sanchez, Manuel . . . . . . . . . . . . . . . 32, 69, 109
Ribar, Luka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Richardson, Chad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Riecke, Hermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Riehle, Alexa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Rieke, Fred. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29, 52, 120
Riffell, Jeffrey . . . . . . . . . . . . . . . . . . . . . . . . . . . .31, 63, 95
Rikhye, Rajeev . . . . . . . . . . . . . . . . . . . . . . . . . 35, 85, 106
Rinzel, John . . . . . . . . . . . . . . . . . . . . 31, 34, 62, 78, 102
Rish, Irina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Robertson, Madeline. . . . . . . . . . . . . . . . . . . . . . . . . . .105
Robinson, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . 100, 110
Rodarie, Dimitri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 67
Rodriguez, Facundo. . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Rodriguez, Francisco B . . . . . . . . . . . . . 32, 69, 96, 109
Rokem, Ariel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88, 99
Romani, Armando. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Romaro, Cecilia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Roque, Antônio C. . . . . . . . . . . . . . . . . . . . . . . . . . 91, 107
Rosa, Epaminondas . . . . . . . . . . . . . . . . . . . . . . 112, 121
Rose, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Rosenbaum, Robert . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Ross, Matt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Rostami, Sareh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Rotermund, David . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 50
Rounds, Emily L.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Rubchinsky, Leonid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Rubega, Maria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Rubin, Jonathan . . . . . . . . . . . . . 31, 60, 101, 102, 119
Rutishauser, Ueli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Rybak, Ilya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 59, 101

S
Safari, Mir Shahram. . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Saini, Nitin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Samadani, Uzma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Samejima, Soshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Sarma, Sridevi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Saudargiene, Ausra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Schünemann, Maik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Scheler, Gabriele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Shemmel, Johannes . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Schmidt, Maximilian . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Schmitt, Sebastian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Schmuker, Michael. . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Schumann, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Schwalger, Tilo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Schwarzer, Max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Sederberg, Audrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Seeman, Stephanie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Segev, Idan. . . . . . . . . . . . . . . . . . . . . . . . . .32, 67, 89, 95
Seidenstein, Alexandra H. . . . . . . . . . . . . . . . . . . . . . 121
Sejnowski, Terrence . . . . . . . . . . . . . . . . . . . . . . . . . 31, 61
Seki, Soju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Senk, Johanna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Sepulchre, Rodolphe . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Shang, Jiaqi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Shea-Brown, Eric . . 29, 30, 52, 56, 88, 96, 113, 117
Shen, Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Shen, Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Shepherd, Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Sherfey, Jason . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Shevtsova, Natalia . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 59
Shi, Jianghong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 56
Shi, Ying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Shifman, Aaron Regan. . . . . . . . . . . . . . . . . . . . . . . . .102
Shillcock, Julian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Shimoura, Renan O. . . . . . . . . . . . . . . . . . . . . . . . 91, 107
Shin, Hyeyoung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Shlizerman, Eli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Siegle, Joshua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106, 115
Singh, Matthew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Sinha, Ankur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Sinha, Sitabhra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Siu, Ricardo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Sivagnanam, Subhashini . . . . . . . . . . 34, 80, 108, 120
Skaar, Jan-Eirik W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Skinner, Frances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 66
Smith, Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Smith, Jeffrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Snyder, Abigail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Sokolov, Yury. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31, 60
Solbrå, Andreas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Song, Hanbing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Song, Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Songco Aguas, Adree. . . . . . . . . . . . . . . . . . . . . . . . . .120
Sorensen, Larry B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Sorensen, Staci . . . . . . . . . . . . . . . . . . . . . . . 94, 102, 103
Sornborger, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Sredniawa, Wladyslaw . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Stöckel, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Stamoulis, Caterina . . . . . . . . . . . . . . . . . . . . . . . . . 30, 55
Stanley, Garrett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Stasik, Alexander J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Stein, Wolfgang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Stepanyants, Armen. . . . . . . . . . . . . . . . . . . . . . . . .30, 53
Stern, Merav . . . . . . . . . . . . . . 35, 84, 88, 97, 105, 113
Steuber, Volker . . . . . . . . . . . . . . . . . . . . . . . . . 35, 82, 120
Stevenson, Ian H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Steyn-Ross, D Alistair . . . . . . . . . . . . . . . . . . . . . . . . . .107
Steyn-Ross, Moira L . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Sting, Louisa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

131



Stoelzel, Carl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Stolyarova, Alexandra . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Stone, Emily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Stratton, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Stringer, Simon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Stuerner, Tomke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Sugi, Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Sumbul, Uygar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Sunkin, Susan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Suter, Benjamin A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Swadlow, Harvey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

T
Tabas, Alejandro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Tahayori, Bahman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Taheri, Marsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Tam, Nicoladie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104, 108
Tang, Rongxiang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Tang, Yi-Yuan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Tang, Yizhe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Tani, Ryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Tank, David W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 46
Tao, Louis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Tavosanis, Gaia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Tennøe, Simen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90, 116
Tepper, Ángeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Teppola, Heidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Terashima, Hiroki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Terman, David H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Tetzlaff, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Thier, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Thivierge, Jean-Philippe . . . . . . . . . . . . . . . . . . 100, 118
Thorpe, Maxwell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Tian, Kun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Timme, Nicholas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Ting, Jonathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94, 102
Tipnis, Uttara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Todorov, Dmitrii . . . . . . . . . . . . . . . . . . . . . . . . . . . 121, 122
Tomen, Nergis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Tompa, Tams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Torre, Emiliano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Tosi, Zo‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Tourbier, Sebastien . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Toyoizumi, Taro . . . . . . . . . . . . . . . . . . . . .34, 74, 89, 118
Trägenap, Sigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Tran, Harry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Tripp, Bryan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Truccolo, Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Truwit, Charles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Tyvaert, Louise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

U
Ukani, Nikul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Urban, Nathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Usui, Ayaka. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

V
Valley, Matt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
van Albada, Sacha J. . . . . . . . . . . . . . . . . . . . 28, 39, 113

van den Brink, Jonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
van Elburg, Ronald . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 70
van Geit, Werner Alfons Hilda . . . . . . . . . . . . . . 95, 114
van Pottelbergh, Tomas . . . . . . . . . . . . . . . . . . . . . . . . 112
Vargas, Alex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Vargas-Irwin, Carlos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Varney, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Varona, Pablo . . . . . . . . . . . . . . . . . . . . . 32, 69, 107, 109
Vasilaki, Eleni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Vattikuti, Shashaank . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Vellmer, Sebastian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Venkatesh, Shivani . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Venugopal, Sharmila . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Verstynen, Timothy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Vich, Catalina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Villafranca D’az, Jafet . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Voges, Nicole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Voina, Doris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Vokral, Jan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Von Kriegstein, Katharina . . . . . . . . . . . . . . . . . . . . . . 103
Von Papen, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Vulliemoz, Serge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

W
Wójcik, Daniel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Wachowiak, Matt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Walker, Kerry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Wang, Cheng-Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Wang, Michael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Wang, Siwei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Warrender, Christina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Waters, Jack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Weaver, Christina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Weerasinghe, Gihan . . . . . . . . . . . . . . . . . . . . . 30, 47, 93
Wei, Yina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Weidel, Philipp . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 39, 88
Weigand, Marvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Weiland, James D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Weiskopf, Nikolaus. . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Wenning-Erxleben, Angela . . . . . . . . . . . . . . . . . . . . . 112
White, Alexander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
White, John A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
White, Martha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Whitesell, Jennifer . . . . . . . . . . . . . . . . . . . . . . . . 103, 117
Whitney, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Wibral, Michael. . . . . . . . . . . . . . . . . . . . . . . . .34, 74, 107
Widge, Alik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Wiedau-Pazos, Martina . . . . . . . . . . . . . . . . . . . . . . . . 113
Wigdahl Bergersen, Aslak . . . . . . . . . . . . . . . . . . . . . . . 90
Williams-Garcia, Rashid . . . . . . . . . . . . . . . . . . . . . . . 108
Wimmer, Ralf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Withlock, Jonathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Wollstadt, Patricia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Wolpert, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29, 44
Woodman, Marmaduke . . . . . . . . . . . . . . . . . . . . . . . . 117
Wrobel, Borys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Wu, Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Wu, Yuan-Ting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

132



Wu, Yue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Wybo, Willem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 67

X
Xiao, Sa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Xiao, Zhuocheng. . . . . . . . . . . . . . . . . . . . . . . . . .104, 123
Xie, Linhui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Y
Yamada, Yasunori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Yamakou, Marius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Yan, Jingwen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Yano, Shiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Yao, Zhaojie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Yao, Zizhen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 42
Yaqoob, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Yazdan-Shahmorad, Azadeh . . . . . . . . . . . . . . . . . . . . 91
Yegenoglu, Alper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Yeh, Chung-Heng . . . . . . . . . . . . . . . . . . . . . . . . . . . 31, 48
Yger, Pierre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Yi, Jane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Yoshimoto, Kenneth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Youngstrom, Isaac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Yu, Alfred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110, 111

Z
Zaghloul, Kareem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Zapotocky, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Zavitz, Daniel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Zeng, Hongkui . . . . . . . . . . . . . . . . . . . . . . . 102, 106, 117
Zhang, Chi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 53
Zhang, Danke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30, 53
Zhang, Jiwei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Zhang, Xiaohui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Zhang, Zhong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Zhelambayeva, Altyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Zheng, He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Zheng, Ying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Zhou, Yiyin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Zhuang, Jun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Zirkle, Joel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Zouridakis, George . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Zurowski, Bartosz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

133


	Overview
	OCNS - The Organization
	Timetable
	General Information
	Meeting venues
	Getting to the conference
	Information for poster presentations
	Registration and locations
	Local Information
	Gala Dinner
	CNS Party
	Restaurants
	Sights


	Program
	Tutorials
	Main Meeting
	Workshops

	Abstracts
	Tutorials
	Invited Presentations
	Contributed Talks
	Workshops

	Posters
	Poster Listing
	P1 - P145
	P146 - P287


	Appendix
	Page Index


