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Organization for Computational Neurosciences
(OCNS)

2017 Board of Directors

 President: Astrid Prinz (Emory University, Atlanta, USA).

+ Vice-President and Secretary: Sharon Crook (Arizona State University, Tempe, USA).

+ Past President: Erik De Schutter (OIST, Japan & University Antwerp, Belgium).

» Treasurer: Volker Steuber (University Hertfordshire, UK).

+ Past Treasurer: Victoria Booth (University Michigan, Ann Arbor, USA).

» CNS Program Chair: Anthony Burkitt (University of Melbourne, Australia).

» CNS Publications Chair: Ingo Bojak (University of Reading, UK).

» CNS Sponsorship Chair: Michele Giugliano (University of Antwerp, Belgium).

» OCNS Website Administrator: Pierre Yger (Institut de la Vision, Paris, France).

* Representative of Local Organizing Committee CNS 2016: Jaeseung Jeong (KAIST, South Korea).

» Representative of Local Organizing Committee CNS 2017: Daniele Marinazzo (Ghent University).

» Representative of Local Organizing Committee CNS 2018: Eric Shea-Brown (University of Washing-
ton, USA).

» CNS Tutorials Organizer: Ben Torben-Nielsen (University of Hertfordshire, UK).

» CNS Tutorials Organizer Assistant: Hermann Cuntz (ESI and FIAS, Franfurt/Main, Germany).

» CNS Workshop Organizer: Eleni Vasilaki (University of Sheffield, UK).

» CNS Workshop Assistant: Joanna Jedrzejewska-Szmek (The Krasnow Institute, Fairfax, USA).

» CNS Registration Organizer: Leonid Rubchinsky (Indiana University, Indianapolis, USA).

» CNS Travel Awards: Daniel K. Wojcik (Nencki Institute of Experimental Biology, Poland).

» CNS Travel Awards Assistant: Taro Toyoizumi (RIKEN Brain Science Institute, Saitama, Japan).

* OCNS Member Approval: Maurice Chacron (McGill University, Montreal, Canada).

» OCNS Member Approval Assistant: Nicoladie Tam (University of North Texas, USA).




2017 Program Committee

* CNS Program Chair: Anthony Burkitt (University of Melbourne, Australia).

* CNS Publication Chair: Ingo Bojak (University of Reading, UK).

* Michael Hawrylycz (Allen Institute for Brain Science, USA).

+ CIiff Kerr (University of Sydney, Australia).

+ Arvind Kumar (KTH Royal Institute of Technology, Stockholm, Sweden).

» Sukbin Lim (NYU Shanghai, China).

+ Yaroslav Molkov (Indiana University — Purdue University, Indianapolis, USA).
» Tatyana Sharpee (Salk Institute, San Diego, USA).

» Tatjana Tchumatchenko (Max Planck Institute for Brain Research, Frankfurt/Main, Germany).
» Krasimira Tsaneva-Atanasova (University of Exeter, UK).

« Wim van Drongelen (University of Chicago, USA).

+ Christina M Weaver (Franklin & Marshall College, USA).

 Si Wu (Beijing Normal University, China).

2017 Local Organizers

» Michele Giugliano (University of Antwerp, Belgium).

» Daniele Marinazzo (University of Ghent, Belgium).

Fundraising

OCNS, Inc is a US non-profit, 501(c)(3) serving organization supporting the Computational Neuroscience com-
munity internationally. We seek sponsorship from corporate and philantropic organizations for support of student
travel and registration to the annual meeting, student awards and hosting of topical workshops. We can also host
booth presentations from companies and book houses. For further information on how you can contribute please
email http://sponsorship@cnsorg.org.
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General Information

Meeting venue

City Campus of Antwerp
University

Kleine Kauwenberg 14 and Grote
Kauwenberg 2

Antwerp

Belgium

The conference will be held in the City Campus of Antwerp University, located in the historical center of Antwerp.

The campus is well served by public transport. The main train station is within walking distance, as well as sev-
eral bus stops.



Plan of the campus:
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Meeting room locations:

See summary on back cover or single maps included in the corresponding sections (Tutorials, Main Meeting,
Workshops).

10



Getting to the conference venue

From Brussels-Zaventem Airport:

A.

Take the train to conveniently travel from Brussels Airport to Antwerp Central Station. Brussels Airport-Zaventem
station is located on level -1 of the terminal, at a small distance from the arrivals hall (2nd floor) and the departures
hall (3rd floor). The trip lasts 32 minutes, and the fare is 11.60 EUR. Info:
http://www.brusselsairport.be/en/passngr/to-from-brussels-airport/train

B.

There is also a Antwerp-Brussels Airport express. The stop "Kon. Astridplein” (near the central station) is always
served, the stop "Crowne Plaza" is only served on request. First departure 3am, last departure midnight, travel
time 45 minutes. Tickets: 10 EUR. Info http://www.airportexpress.be/page?&orl=2&ssn=&Ing=2&pge=4

From Amsterdam Schiphol Airport:

Take the train to conveniently travel from Amsterdam Schiphol Airport to Antwerp Central Station. You can use
the Thalys fast train, trip duration circa 60 min, tickets around 50 EUR. Info: https://www.thalys.com/be/en/

Information for poster presentations

The poster area is located in building E (SportHall) as shown in the campus map. Poster boards will be num-
bered. Fixing adhesive material will be available. Poster orientation is portrait and maximum net dimensions are
180 cm x 95 cm (A0 is smaller than 120 x 85 cm/ or 47 x 33 in).

Poster Sessions will be held on July 16, 17, and 18 from 4:00 pm to 7:00 pm
Poster set up:

Sunday, July 16, 2017: From 8 am to 4 pm

Monday, July 17, 2017: From 8 am to 4 pm

Tuesday, July 18, 2017: From 8 am to 4 pm

Poster should be removed:
Sunday, Monday, July 16 and 17, 2017: Next day morning latest
Tuesday, July 18, 2017: Before 7 pm

Posters that are not removed by the stated time will be discarded. The organisers are not responsible for loss or
damage to posters not removed by the given times.
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Registration and locations

Registration will be held at the hall of the Auditorium K.001 Aula Rector Dhanis. The entrance is at Kleine
Kauwenberg 14.

Registration hours:

July 15: From 8 am to 6:30 pm
July 16: From 8 am to 7 pm

July 17: From 8 am to 7 pm

July 18: From 8 am to 6:30 pm
July 19: From 8:30 am to 6:30 pm
July 20: From 8:30 am to 6:30 pm

Locations (see also floor plans in the Tutorials, Main Meeting and Workshop sections):

What Where

Tutorials Aulas B.001, B.002, B.003, B.004, K.101, K.102

Keynote Lectures and Oral Sessions: Auditorium K.001 Aula Rector Dhanis

Workshops Aulas C.101, C.102, K.101, K.102, K.103, K.201, K.202, K.203
OCNS board/program committee meetings Aula E.201

Welcome Reception Hall Auditorium K.001 Aula Rector Dhanis

Coffee Breaks Hallway Building B through E

12



Local information

Good to Know
Detailed information is available on the official Belgium website at https:/www.belgium.be/en/about_belgium.

Official Language
The official language of the meeting is English. Interpreting is not provided.

Insurance
The organisers do not accept responsibility for individual medical, travel or personal insurance. All participants
are strongly advised to take out their own personal insurance before travelling to Antwerp.

Currency & Banking

The Euro (EUR) is the official currency of Belgium. Exchange of foreign currency is available at the Airports,
Central Station, and at most hotels, banks and exchange offices throughout the city. International credit cards
are accepted for payments in hotels, restaurants and shops. Payment in cash (in EUR) is also available in some
restaurants and shops, so please ask for details on-site if necessary. You can find the official exchange rates on
the European Central Bank website at:
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates.

Electricity

Belgium uses a 230 volt 50 Hz system. Sockets follow the standard also used in France, Denmark, Poland,
Greece, Italy, Ireland and other countries and also have a grounding pin sticking out of the power socket, which
is also known as a type E socket.

Shopping
Most shops in Antwerp are open from 9:30 am to 6:00 pm, from Monday to Saturday. However, some grocery
stores may be open until 8:00 pm, from Monday to Sunday.

Time Zone

Belgium is on Central European Time (CET), which is Greenwich Mean Time (GMT) + 1 hour. Note that April to
October is daylight saving time, i.e. GMT + 2 hours.

Tipping

Service is usually included in the bill in most bars and restaurants, but tips are welcome.

Tours

Tours are not a part of the meeting. If you wish to explore the city, check the possibilities in your hotel or choose
the tour directly at: http://www.visitantwerpen.be/en

13



Transportation
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Get around by public transportation

The public transportation company De Lijn (www.delijn.be/en/) operates a dense network of buses, trams, and
underground tram connections in the city and its surroundings. If you plan on taking a bus or tram more than
5 times, then buy a 10-ride card (Lijnkaart) costing 15 EUR. They can be bought at self-service machine (no
electronic payment means accepted however) or at fixed points in town (e.g. most supermarkets and any place
that sells newspapers, just ask the cashier). Every time you enter a bus or tram, just put that card in one of the
yellow ticket machines. A single ticket bought from the driver in the bus costs more (3.00 EUR per ride). For one
fare, you can ride up to 1h within the city boundaries. The central bus station is the Franklin Rooseveltplaats,
walking distance from the congress venue and also very close to the central railway station. Nearly all buses
leave from there, or from the Antwerp-Central or Antwerp-Berchem train stations.

http://www.visitantwerpen.be/en/plan-your-visit/transport-antwerp/public-transport

On foot

Most things to see are within walking distance from the venue of the conference. These are near or within the
Boulevards, the half-moon of avenues where there were once 16th century city-walls. This old town center, with
a diameter of about 1.5 km can be walked, but there is excellent public transport.

By horse (!)
Horse tram (paardentram: (www.werkendtrekpaard.be/paardentram/) leaves from the Grote Markt every hour. It
is an approximately 40 minutes / 1.5 mile touristic ride through the city.

Weather
The month of July is a typical summer month with daily high temperatures, which can occasionally exceed 30
degrees C. You can check for current weather conditions in Antwerp at www.meteovista.be

Important Telephone Numbers
112: General Emergency for Europe
100: Fire and Ambulance

101: Police

Free Wi-Fi
Free Wi-Fi is provided at the meeting venue. Each registered participant will receive their own unique password.

Taxi Services

Taxis are available, but they can be quite expensive. They await customers at specific locations around town
(waving your hand will seldom work) like the Groenplaats (near the cathedral) or the central railway station. You
can recognize these places by an orange TAXI sign. The prices are fixed in the taximeter. Beware that Antwerp
and Brussels were named as the most congested cities in Europe and North America.

DTM Taxi - Transport - Moving: +32 03 366 66 66

Antwerp - Tax N.V.: +32 03 238 38 38
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Gala Dinner

Date: Tuesday, July 18, 2017

Time: 7:30 PM

Venue: Elzenveld Seminar Centre, Lange Gasthuisstraat 45, 2000 Antwerpen http://www.elzenveld.be/en/hotel
Recommended dress code: Casual

How to get there: The easiest way to reach Elzenveld Seminar Centre from the meeting venue is on foot, it takes
18 min (1,5 km). By public transportation, it takes 10 min (i.e. Tramline n. 7 from Antwerpen Keizerstraat direction
to Antwerpen Mechelseplein). Tramline n. 4 also stops right in front of the door (Antwerpen Mechelseplein).
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Elzenveld Hotel and Conference Center:

The inner courtyard, chapel, former hospital wards, monastery and presbytery, all dating from the 15th to 17th
century, now form an oasis of hospitality in Antwerp’s city centre. The medieval section of the building has been
beautifully restored and adapted to modern needs. Since time immemorial, bodies have been healed and spirits
ministered to in this place. Aperitifs will be served in the Chapel, or in the garden if the weather allows, followed
by a walking dinner in the Van Gessel Room.
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CNS Party

Date: Monday, July 17, 2017

Time: 8:30 PM - 00:30 AM

Venue: Party Room HAVN CHURCH, Italielei 8, 2000 Antwerp (www.havnchurch.com)
Recommended dress code: Casual

The party will take place in the HAVN CHURCH (http://www.havnchurch.com/). The building was originally used
as a Catholic church, built in late Gothic style during the 16th century. It was seized by the Reformed in the 17th
century. Today, it is no longer a church and it used as a ballroom, where night parties, banquets and weddings
are celebrated.

Each participant will get a voucher for free drinks (beer, wine or soda) for the entire duration of the party. Cava
will be served during the first hour and a half of the event. Note that neither (finger) food nor snacks will be served
on site.

How to get there: From the meeting venue, it takes 10min (750m) on foot, while from the "Centraal" railway sta-
tion it takes about 16 min on foot, or 12-15 min by public transportation (i.e. bus n. 720, 730, 770, 771, 776 from
Rooseveltplaats Bus Station, direction Antwerpen Sint-Jansplein; or tram n. 12 from Centraal Station, direction
Antwerpen Richard).

17
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Restaurants

Selected restaurants close to the venue:

Boston Steak House
Burger restaurant
De Keyserlei 55, 2018 Antwerpen

Bourla Schouwburg

Belgian cuisine

Komedieplaats 19, 2000 Antwerpen
http://bourlaschouwburg.nu/

Cafe Imperial
Belgian-French cuisine
Meir 50, 2000 Antwerpen
www.cafe-imperial.be

Comocomo
Spanish restaurant
Kammenstraat 75, 2000 Antwerpen

De Pottekijker

Belgian restaurant and grill
Kaasrui 5, 2000 Antwerpen
www.depottekijker.be

Ellis Gourmet Burger

Burger Restaurant

Sint-Aldegondiskaai 52, 2000 Antwerpen
www.ellisgourmetburger.be

Gran Duca

Italian restaurant

De Keyserlei 28, 2018 Antwerpen
https://www.granduca.be/

Gustav

Grills cuisine

Van Ertbornstraat 2, 2018 Antwerpen
www.brasseriegustav.be

Gusto

Belgian-French cuisine
Steenhouwersvest 29, 2000 Antwerpen
www.mygusto.be

Horta Grand Cafe & Art Nouveau Zaal
European restaurant

Hopland 2, 2000 Antwerpen
www.grandcafehorta.be
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Korean Barbecue
Korean food
Statiestraat 8, 2018 Antwerpen

Roma
Italian restaurant
Statiestraat 19, 2018 Antwerpen

Rubens Inn

Belgian restaurant

Wapper 17, 2000 Antwerpen
www.rubensinn.be

Super Natural
Snakbar
Minderbroedersrui 47, 2000 Antwerpen

Umi Sushi

Asian cuisine

Groenplaats 8, 2000 Antwerpen
www.umi-sushi.be

Wagamama
Japanese food
De Keyserlei 13, 2018 Antwerpen

More Antwerp restaurant you can find at: http://www.cnsorg.org/cns-2017-local-info.
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Tutorials

Subcellular modeling
Room B.001, 15/07/2017, 09:00 - 17:00

Andrew Gallimore, Okinawa Institute of Science and Technology, Japan
Weiliang Chen, Okinawa Institute of Science and Technology, Japan

Detailed modeling of structure and function at the cellular level

Room B.002, 15/07/2017, 09:00 - 17:00

Benjamin Torben-Nielsen, Demiurge Technologies AG, Switzerland

Elisabetta lavarone, Swiss Federal Institute of Technology in Lausanne, Switzerland

Simulation of large-scale neural networks
Room B.003, 15/07/2017, 09:00 - 17:00

Sacha J. van Albada, Julich Research Centre and JARA, Germany
Jonas Stapmanns, Julich Research Centre and JARA, Germany

Modeling and analysis of extracellular potentials

Room B.004, 15/07/2017, 09:00 - 12:00

Gaute T. Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway
Espen Hagen, Dept. of Physics, University of Oslo, Norway

Neuroscience data analysis
Room K.101, 15/07/2017, 13:30 - 17.00

Arvind Kumar, KTH Royal Institute of Technology, Sweden
Michael Denker, Julich Research Centre, Germany

Neuroinformatics Resources for Computational Modellers
Room B.004, 15/07/2017, 13:30 - 17:00

Padraig Gleeson, University College London, UK
Andrew P. Davison, French National Center for Scientific Research, France




Main Meeting

Saturday July 15

9:00 -
9:00-16:30
17:00-17:15

17.15-18:15 Ki

18:30

Registration (Hall Auditorium K.001 Aula Rector Dhanis)

Tutorials (Aulas B.001, B.002, B.003, B.004, K.101)

Welcome and announcements (Auditorium K.001 Aula Rector Dhanis)
Keynote 1:

Auditory scene analysis: support and challenges for predictive coding
Sue Denham

Welcome reception (Hall Auditorium K.001 Aula Rector Dhanis)

Sunday July 16

9:00 - 9:10

9:10-10:10 K2

10:10 — 10:40

10:40-11:00 Of

11:00-11:20 02

11:20-11:40 O3

11:40 -12:00 O4

12:00 — 13:30

13:30-13:50 05

Announcements (Auditorium K.001 Aula Rector Dhanis)
Keynote 2:
Information coding with dendrites: lessons from computational models

Panayiota Poirazi

Break

Oral session I: Single-cell properties and modeling

Impact of axon initial segment geometry on excitability
Sarah Goethals, Romain Brette*

Can integrate-and-fire models simulate robust neuromodulation?
Tomas van Pottelbergh*, Rodolphe Sepulchre

Sholl analysis predicted by dendrite spanning fields
Alex Bird*, Hermann Cuntz

Flexible Bayesian inference for complex models of single neurons
Pedro Goncalves*, Jan-Matthis Luckmann, Giacomo Bassetto, Marcel Nonnenmacher,
and Jakob Macke

Break for lunch

Oral session Il: Sensory processing: Vision and olfaction

Learning to read out predictive information in early visual processing
Audrey Sederberg*, Jason Maclean, and Stephanie Palmer
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13:50 — 14:10
14:10 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 — 16:00
16:00 — 19:00
9:00 -9:10

06

F1

o7

08

Closed-loop estimation of retinal network sensitivity reveals signature of efficient
coding

Ulisse Ferrari*, Christophe Gardella, Olivier Marre, and Thierry Mora

Featured Oral 1:

Mixture processing in a biophysical model of the early olfactory system of honey-
bees
Ho Ka Chan*, Thomas Nowotny

Break

Oral session lll: Synapses and plasticity

Learning Quantal Parameters through Expectation-Maximization
Emina lbrahimovic*, Martin Muller, and Jean-Pascal Pfister

Emergence of disparity selective neurons through spike-based learning from nat-
uralistic stereoscopic datasets
Tushar Chauhan*, Timothee Masquelier, Alexandre Montlibert, and Benoit Cottereau

Poster session I: Posters P1 — P104 (Building E)

Monday July 17

9:10-10:10 K3

10:10 — 10:40
10:40 — 11:00
11:00 — 11:20
11:20 — 11:40
11:40 — 12:00
12:00 — 13:30
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09

010

O11

012

Announcements (Auditorium K.001 Aula Rector Dhanis)

Keynote 3:

Molecular models of the early and late phases of bidirectional plasticity at cerebel-
lar synapses
Erik De Schutter

Break

Oral session IV: Memory, decisions, and pathological activity

Cortical correlations support optimal sequence memory
Moritz Helias*, Jannis Schuecker, David Dahmen, and Sven Goedeke

Rats decisions flexibly integrate sensory information and recent history of out-
comes

Alexandre Hyafil*, Ainhoa Hermoso Mendizabal, Pavel Ernesto Rueda-Orozco, Santiago
Jaramillo, David Robbe, and Jaime de La Rocha

Nicotinic modulation of hierarchal inhibitory circuit control over resting state ultra-
slow fluctuations in the prefrontal cortex
Marie Rooy*, Fani Koukouli, David Digregorio, Uwe Maskos, and Boris Gutkin

The minimalistic mathematical model of the cerebral blood flow effects during cor-
tical spreading depression
Andrey Verisokin*, Darya V. Verveyko, and Dmitry Postnov

Break for lunch



13:30 — 14:10
14:10 — 14:30
14:30 — 14:50
14:50 — 15:20
15:20 — 15:40
15:40 - 16:00
16:00 — 19:00
19:00

9:00 - 9:10

Oral session V: Network structure and coherent activity

F2 Featured Oral 2:
Heterogeneous layers stabilize propagation of a multiplexed spike signal in a feed-
forward network
Dongqi Han*, Sungho Hong
013 Necessity for coherence in motor control
Willy Wong*, Omid Talakoub, Robert Chen, and Milos Popovic
014 Dissecting gamma phase and amplitude-specific information routing in V4 of
macaque during selective attention
Dmitriy Lisitsyn*, Eric Drebitz, Iris Grothe, Sunita Mandon, Andreas Kreiter, and Udo A
Ernst
Break
Oral session VI: Neural mass models
015  Structure-Function Relationships via Neural Field Theory
Peter A Robinson*, Xuelong Zhao, Kevin Aquino, John Giriffiths, Grishma Mehta-
Pandejee, Natasha Gabay, James Maclaurin, and Somwrita Sarkar
016 Dynamic Operations of Hierarchically Interacting Canonical Microcircuits
Tim Kunze*, Jens Haueisen, and Thomas R. Kndsche
Poster session lI: Posters P105 — 209 (Building E)
CNS Party (Party Room, Havn Church)
Tuesday July 18
Announcements (Auditorium K.001 Aula Rector Dhanis)

9:10-10:10 K4

10:10 - 10:40
10:40 - 11:00
11:00-11:20
11:20-11:40

017

018

019

Keynote 4:

I am therefore I think
Karl Friston

Break

Oral session VII: Large networks and large scale simulations

Learning structure of 3D objects with cortical columns
Subutai Ahmad*, Yuwei Cui, Marcus Lewis, and Jeff Hawkins

Influence of network topology on spreading of epileptic seizure
Simona OImi*, Spase Petkoski, Fabrice Bartolomei, Maxime Guye, and Viktor Jirsa

A model-based approach for detecting multiple change points in multivariate spike
count data
Hazem Toutouniji*, Daniel Durstewitz
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11:40 - 12:00 020 Geppetto: an open source visualisation and simulation platform for neuroscience

12:00 — 13:30
13:30 — 14:30
14:30 — 14:50
14:50 — 15:30
15:30 — 16:00
16:00 — 19:00
19:30

9:00 - 10:30
10:30 - 11:00
11:00 - 12:30
12:30 — 14:00
14:00 — 15:30
15:30 — 16:00
16:00 — 18:00
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021

F3

Matteo Cantarelli*, Adrian Quintana, Boris Marin, Matt Earnshaw, Padraig Gleeson,
Robert Court, Robert A McDougal, R Angus Silver, Salvador Dura-Bernal, Stephen Lar-
son, William W Lytton, and Giovanni Idili

Break for lunch

OCNS Member Meeting

Oral session VIII: Grid cells and place cells

Position is coherently represented during flickering instabilities of place-cell cog-
nitive maps in the hippocampus
Lorenzo Posani*, Simona Cocco, Karel JeZzek, and Rémi Monasson

Featured Oral 3:

Modeling grid fields instead of modeling grid cells
Sophie Rosay*, Tanja Wernle, and Alessandro Treves

Break

Poster session lll: Posters P210 — P314 (Building E)

Gala Dinner (Elzenveld Seminar Centre)

Wednesday July 19 and Thursday July 20

Workshop Morning Session 1 (Aulas C.101, C.102, K.101, K.102, K.103, K.201,
K.202, K.203)

Break

Workshop Morning Session 2

Break for Lunch

Workshop Afternoon Session 1

Break

Workshop Afternoon Session 2



W1

w2

W3

w4

W5

W6

Workshops

Neuronal Oscillations: Mechanisms and Functionality
Room K.202, Wed and Thur 9:00 to 18:00

Horacio G Rotstein, New Jersey Institute of Technology
Frances Skinner, Krembil Research Institute
Vassilis Cutsuridis, University of Lincoln

Methods of Information Theory in Computational Neuroscience
Room C.101, Wed and Thur 9:00 to 18:00

Joseph T. Lizier, University of Sydney

Viola Priesemann, Max Planck Institute for Dynamics and Self-organisation
Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University

Lubomir Kostal, Academy of Sciences of the Czech Republic

Michael Wibral, Goethe University, Frankfurt

Recent Methods and Analyses for Large-scale Neuronal Population Recordings
Room C.102, Wed and Thur 9:00 to 18:00

Michela Chiappalone, lIstituto Italiano di Tecnologia, Genova

Valentina Pasquale, Istituto ltaliano di Tecnologia, Genova
Pierre Yger, Institut de la Vision, INSERM, Paris

New Advances in Theoretical Tools for the Study of Large-scale Neural Systems
Room K.101, Wed 9:00 to 18:00 and Thur 9:00 to 12:30

Simona Olmi, Institute of Complex Systems- CNR

David Angulo-Garcia, Aix-Marseille University
Benjamin Lindner, Humboldt University Berlin

Theoretical Neuroscience in the Human Brain Project
Room K.201, Wed 9:00 to 18:00

Michele Giugliano, Universiteit Antwerpen
Alain Destexhe, Centre National de la Recherche Scientifique (CNRS)
Viktor Jirsa, Aix-Marseille University

Computational and Experimental Advances in Cerebellum Research
Room K.102, Wed 9:00 to 18:00

Erik De Schutter, Okinawa Institute of Science and Technology
Yunliang Zang, Okinawa Institute of Science and Technology
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w7

w8

w9

w10

W11

w12

W13

W14

28

Principles and Applications of Extracellular Potentials
Room K.203, Wed 9:00 to 18:00

Michiel Remme, Humboldt University Berlin
Torbjoern Ness, Norwegian University of life Sciences
Gaute Einevoll, Norwegian University of life Sciences - University of Oslo

Fingerprints and Applications of Brain Dynamics Estimated from Neuroimaging Data
Room K.103, Wed 9:00 to 18:00

Matthieu Gilson, University Pompeu Fabra
Tim van Hartevelt, Oxford

Emerging Models in Scientific Communication and Discussion
Room K.201, Thur 9:00 to 18:00

Romain Brette, Institut de la Vision, Paris

Reaction-diffusion Modeling for Neurobiology
Room K.203, Thur 9:00 to 18:00

Robert McDougal, Yale University

William W Lytton, SUNY Downstate

Avrama Blackwell, George Mason

Recent Developments in Epilepsy Modeling
Room K.103, Thur 9:00 to 18:00

Wim van Drongelen, The University of Chicago
Stephan A. van Gils, University of Twente

Neuroscience Gateway: Enabling Developers and Users to Utilize Open High Performance Com-
puting Resources for Large Scale Simulations

Room K.101, Thur 14:00 to 18:00

Amit Majumdar, University of California San Diego, La Jolla
Subhashini Sivagnanam, University of California San Diego, La Jolla
Ted Carnevale, Yale University

Cortical Function: Towards Understanding and Developing Integrative Theories
Room K.102, Thur 14:00 to 18:00

Hamish Meffin, The University of Melbourne
Anthony Burkitt, The University of Melbourne

Postdoc Career Workshop
Room K.102, Thur 9:00 to 12:30

Joanna Jedrzejewska-Szmek, University of Warsaw




Abstracts



Tutorials

T1 Subcellular modeling
Room B.001, 15/07/2017, 09:00 - 17:00

Andrew Gallimore, Okinawa Institute of Science and Technology, Japan
Weiliang Chen, Okinawa Institute of Science and Technology, Japan

Many important neural functions are controlled by complex networks of intracellular proteins and signalling
molecules. A variety of modular signalling pathways connect and interact to form large networks possessing
emergent properties irreducible to individual molecules or pathways. These include bistable and ultrasensitive
switches, as well as feedback regulation, and synchronisation. These properties are essential for the induction
and regulation of critical neural functions, such as long-term depression and potentiation. The complexity of these
networks renders their analysis by inspection alone unfeasible, and we must turn to computational modelling to
understand them.

The first half of this tutorial will focus on the structure and function of intracellular networks and deterministic
methods for modelling and analysing them. We will use a number of important subcellular pathways to illustrate
the key concepts and demonstrate the importance and utility of deterministic methods in their modelling and
simulation. We will discuss both the biochemistry of these pathways and their mathematical representation. We
will then discuss how these modular pathways connect and interact to form large networks. Important network
motifs and their emergent properties will also be explained with specific examples given, as well as mathematical
methods for their analysis. We will discuss a number of tools for simulating these differential equation models,
but will use the open source software Copasi in the tutorial, owing to its ease of installation and use. Participants
will have the opportunity to build and simulate their own signalling pathway model in Copasi. This part of the
tutorial will serve as a good introduction to molecular systems modelling for those with little prior experience, and
will assume little more than a grasp of basic differential equations and biochemistry.

The second half of the tutorial will focus on more advanced modelling approaches based on several state of
the art software packages. We will explain how the time evolution of real molecular systems can diverge from a
differential equation-based description due to concepts such as probabilistic interactions in small volumes and
spatial heterogeneity. We will describe mathematical approaches to modelling stochastic effects and diffusion
and introduce a number of software tools that are based on such descriptions. These include particle-tracking
packages such as MCell and Smoldyn, and voxel-based packages such as NeuroRD and STEPS. We will then
demonstrate the typical modeling practices with these applications, from model and geometry description to
simulation execution and data gathering. Finally, we will briefly discuss recent advances and expected near-
future directions of the field.

References
[1] STEPS: http://steps.sourceforge.net

[2] MCell: http://mcell.org/
[8] Smoldyn: http://www.smoldyn.org/
[4] NeuroRD: http://krasnow1.gmu.edu/CENIab/software.html

[5] Antunes, G., and De Schutter, E. (2012). A Stochastic Signaling Network Mediates the Probabilistic Induc-
tion of Cerebellar Long-Term Depression. Journal of Neuroscience 32, 9288-9300.

[6] Bhalla, U.S., and lyengar, R. (1999). Emergent properties of networks of biological signaling pathways.
Science 283, 381-387.

[7]1 Eungdamrong, N.J., and lyengar, R. (2004). Computational approaches for modeling regulatory cellular
networks. Trends in Cell Biology 14, 661-669.

[8] Gallimore, A.R., Aricescu, A.R., Yuzakl, M., and Calinescu, R. (2016). A Computational Model for the
AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression. Plos Com-
putational Biology 12, 283.
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[9] Kotaleski, J.H., and Blackwell, K.T. (2010). Modelling the molecular mechanisms of synaptic plasticity using
systems biology approaches. Nature Reviews Neuroscience 11, 239-251.
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T2 Detailed modeling of structure and function at the cellular level
Room B.002, 15/07/2017, 09:00 - 17:00

Benjamin Torben-Nielsen, Demiurge Technologies AG, Switzerland
Elisabetta lavarone, Swiss Federal Institute of Technology in Lausanne, Switzerland

In the morning session, we introduce the morphology of dendrites and axons, the specialised input and output
arborisations of neurons. Their shape is pivotal for brain functioning for two reasons: First, overlap between
dendrites and axons defines the micro-circuit. Second, the shape and membrane composition of dendrites define
how inputs are transformed into relevant outputs. In this tutorial, we will start by explaining the importance of
morphologies and how to quantify them (say, in order to distinguish healthy from pathological morphologies). We
will touch on algorithmic synthesis of large numbers of unique neuronal morphologies for application in large-
scale modelling efforts. We finish the morning session with a hands-on tutorial using btmorph [1] to analyse
populations of neuronal morphologies.

In the afternoon session, we explain how neuronal dynamics takes place at the single neuron level and how den-
drites turn input signals into an output. We briefly explain the conductance-based and compartmental-modelling
paradigms to simulate the dynamics on neurons with detailed membrane composition and elaborate neuronal
morphologies. We then proceed to show several free community resources to construct, simulate, share and
analyse single neuron models. We will also introduce methods to quantify neurons electrophysiological proper-
ties. We end the afternoon session with a hands-on demonstration of how to construct and simulate detailed
models of neurons using NEURON and python [2] and on how to constrain their free parameters with experi-
mental data using BluePyOpt [7].

References

[1] Torben-Nielsen B. An efficient and extendable Python library to analyze neuronal morphologies. Neuroin-
formatics 12:619-622, 2014.

[2] James G.K., Hines M., Hill S., Goodman P.H., Markram H.,1 Schurmann F. Component-Based Extension
Framework for Large-Scale Parallel Simulations in NEURON. Frontiers in Neuroinformatics, 3:1-12, 2009.

[3] Torben-Nielsen B., Cuntz H. Introduction to dendritic morphology, The Computing Dendrite, Springer, 2014.
[4] London M., Hausser M. Dendritic computation. Annu Rev Neurosci. 28:503-32, 2005.

[5] Parekh R., Ascoli G. Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuro-
science. Neuron 77(6): 1017-1038, 2013.

[6] Silver A. Neuronal arithmetic. Nature Reviews Neuroscience 11, 474-489, 2010.

[7] Van Geit W., Gevaert M., Chindemi G., Rossert C., Courcol J. D., Muller E. B., Markram H. (2016). BluePy-
Opt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuro-
science. Frontiers in Neuroinformatics, 10.

[8] Ramaswamy S., Courco J. D., Abdellah M., Adaszewski S. R., Antille N., Arsever S., Chindemi G. (2015).
The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neu-
ral Circuits, 9, 44.

[9] Ha E., Hill S., Schurmann F., Markram,H., Segev . (2011). Models of neocortical layer 5b pyramidal cells
capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol, 7(7), €1002107.

[10] Markram H., Muller E., Ramaswamy S., Reimann M. W., Abdellah M., Sanchez C. A,, ..., Kahou G. A. A.
(2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2), 456-492.
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T3 Simulation of large-scale neural networks
Room B.003, 15/07/2017, 09:00 - 17:00

Sacha J. van Albada, Julich Research Centre and JARA, Germany
Jonas Stapmanns, Julich Research Centre and JARA, Germany

This tutorial starts with an introduction to large-scale neuronal networks, giving examples of existing models and
identifying some challenges these networks pose for modeling and simulation. This is followed by an introduction
to the NEural Simulation Tool (NEST [1]), shedding light on its design principles, which address challenges
for large-scale simulations. An overview of the features of NEST is provided, also touching upon advanced
properties of neuronal networks like gap-junctions [2]. To familiarize participants with the basic usage of NEST,
some simple networks are programmed in hands-on exercises. Next, the tutorial explains how NEST enables
parallel simulations via both distributed and threaded computations. Threaded simulations are demonstrated on
a cortical microcircuit model [3]. Finally, the tutorial provides an introduction to the NEST Modeling Language
(NESTML [4]). In this final hands-on part of the tutorial, the participants learn how to create neuron models in
NEST using NESTML.

The tutorial does not assume any prior knowledge of NEST. However, it is recommended that participants install
NEST on their laptops beforehand [5]. Furthermore, it is recommended to have VirtualBox installed and to have
at least 4 GB of free memory available.

References

[1] Kunkel S, Morrison A, Weidel P, Eppler JM, Sinha A, Schenck W, Plesser HE. (2017). NEST 2.12.0. Zenodo.
http://doi.org/10.5281/zenodo.259534

[2] Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M (2015) A unified framework for
spiking and gap-junction interactions in distributed neuronal network simulations Front. Neuroinform. 9:22

[3] Potjans TC, Diesmann M. The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a
Full-Scale Spiking Network Model. Cereb. Cortex. 2014;24(3):785-806. DOI: 10.1093/cercor/bhs358.

[4] Plotnikov D., Rumpe B., Blundell I, Ippen T., Eppler J.M., Morrison A., 2016. NESTML: a modeling language
for spiking neurons. arXiv preprint arXiv:1606.02882.

[5] http://www.nest-simulator.org/installation/
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T4 Modeling and analysis of extracellular potentials
Room B.004, 15/07/2017, 09:00 - 12:00

Gaute T. Einevoll, Norwegian University of Life Sciences & University of Oslo, Norway
Espen Hagen, Dept. of Physics, University of Oslo, Norway

While extracellular electrical recordings have been one of the main workhorses in electrophysiology, the interpre-
tation of such recordings is not trivial [1,2,3], as the measured signals result of both local and remote neuronal
activity. The recorded extracellular potentials in general stem from a complicated sum of contributions from all
transmembrane currents of the neurons in the vicinity of the electrode contact. The duration of spikes, the extra-
cellular signatures of neuronal action potentials, is so short that the high-frequency part of the recorded signal,
the multi-unit activity (MUA), often can be sorted into spiking contributions from the individual neurons surround-
ing the electrode [4]. No such simplifying feature aids us in the interpretation of the low-frequency part, the local
field potential (LFP). To take a full advantage of the new generation of silicon-based multielectrodes recording
from tens, hundreds or thousands of positions simultaneously, we thus need to develop new data analysis meth-
ods and models grounded in the biophysics of extracellular potentials [1,3,4]. This is the topic of the present
tutorial.

* In the tutorial we will go through the biophysics of extracellular recordings in the brain,

» a scheme for biophysically detailed modeling of extracellular potentials and the application to modeling
single spikes [5-7], MUAs [8] and LFPs, both from single neurons [9] and populations of neurons [8,10,11],

» LFPy (LFPy.github.io) [12], a versatile tool based on Python and the NEURON simulation environment [13]
(www.neuron.yale.edu) for calculation of extracellular potentials around neurons, and

* new results from applying the biophysical forward-modeling scheme to predict LFPs from comprehensive
point-neuron network models, in particular Potjans and Diesmann’s model of the early sensory cortical
microcircuit using hybridLFPy [14,15] will be presented.

References

[1] KH Pettersen et al., Extracellular spikes and CSD, in Handbook of Neural Activity Measurement, Cambridge
(2012)

[2] G Buzsaki et al., Nat Rev Neurosci 13:407 (2012)
[38] GT Einevoll et al., Nat Rev Neurosci 14:770 (2013)
[4] GT Einevoll et al., Curr Op Neurobiol 22:11 (2012)
[5] G Holt, C Koch, J Comp Neurosci 6:169 (1999)
[6] J Gold et al., J Neurophysiol 95:3113 (2006)
[7] KH Pettersen and GT Einevoll, Biophys J 94:784 (2008)
[8] KH Pettersen et al., J Comp Neurosci 24:291 (2008)
[9] H Lindén et al., J Comp Neurosci 29: 423 (2010)
[10] H Lindén et al., Neuron 72:859 (2011)
[11] S teski et al., PLoS Comp Biol 9:e1003137 (2013)
[12] H Lindén et al., Front Neuroinf 7:41 (2014)
[13] ML Hines et al., Front Neuroinf 3:1 (2009)
[14] TC Potjans and M Diesmann, Cereb Cortex 24:785 (2014)
[15] E Hagen et al., Cereb Cortex 26:4461 (2016)
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T5 Neuroscience data analysis
Room K.101, 15/07/2017, 13:30 - 17:00

Arvind Kumar, KTH Royal Institute of Technology, Sweden
Michael Denker, Julich Research Centre, Germany

In this tutorial we will explain the theory and practical issues associated with some of the most common tools to
analyse spiking activity. Specifically, we will focus on the estimation of firing rate, spike train irregularity, pairwise
and higher order correlations, trial-by-trial variability and co-variability, spectrum, dimensionality reduction and
estimation (e.g. Gaussian factor analysis). The tutorial will be split in two parts.

In the first part we will provide the theoretical background behind the analysis methods and interpretation of the
results. In the second part we will demonstrate how various tools from neuroinformatics, in particular the Python
libraries Neo and Elephant, work together in building up robust and reproducible analysis workflows. In addition,
we will discuss practical issues related to the analysis methods and interpretation of the results. All through the
tutorial we will focus on the spiking activity but most of the methods can be generalized to study other neural
data.

References
[1] Gruen S, Rotter S (2010) Analysis of parallel spike trains. Springer.

[2] Cunningham JP, Yu B (2014) Dimensionality reduction for large-scale neural recordings. Nature Neuro-
science, 17, 1500-1509. doi:10.1038/nn.3776

[3] Averbeck B, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nature
Reviews Neurosci. 7:358-366 (2006).
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T6 Neuroinformatics Resources for Computational Modellers
Room B.004, 15/07/2017, 13:30 - 17.00

Padraig Gleeson, University College London, UK
Andrew P. Davison, French National Center for Scientific Research, France

Neuroinformatics resources are becoming an essential part of computational investigations in neuroscience. A
movement towards making data and software freely available to the community means that more and more
experimental datasets, general purpose analysis tools and infrastructure for computational modelling and sim-
ulation are available for computational neuroscientists to help build, constrain and validate their models. This
tutorial will give an overview of the range of neuroinformatics resources currently available to the community. The
first half will give a brief introduction to a number of these under the headings: Experimental datasets; Structured
data from literature; Analysis tools; Simulation environments; Model sharing; Computing infrastructure; Open
source initiatives. The second half of the tutorial will involve hands on exercises where multiple resource will be
accessed, data transformed and analysed and new models executed. Note that this tutorial will focus on neuroin-
formatics resources for cell and network modelling, and not cover the wide range of neuroimaging or genetics
databases.
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Invited Presentations

Sue Denham School of Psychology, Faculty of Health and Human Sciences,
Plymouth University,
Plymouth, Devon, UK

K1 - Auditory scene analysis: support and challenges for predictive coding

Perception seems so simple. | look out of the window to see houses, trees, people walking past, the sky above,
the grass below. | hear birds in the trees, cars going past, the distant sound of an alarm. The world is full of
objects that make their presence known to me through my senses — what could be more simple? Yet the efficacy
of perceptual experience hides a host of questions for which we do not yet have the answers. Information reaching
our senses is generally incomplete, ambiguous, distributed in space and time and not neatly sorted according
to its source, so a key function of our perceptual systems is to discover the likely causes of our sensations.
Perception as inference or hypothesis testing, formalised in the predictive coding theory, offers an attractive
framework for exploring these issues. From this perspective, regularities or patterns provide perceptual systems
with some traction, allowing the formation of expectations and a basis for decomposing the world into discrete
objects. But in the dynamic world which we inhabit, object representations must be similarly dynamic, and need
to form and dissolve, dominate and yield, in a way that facilitates veridical perception. In this talk | will discuss
auditory scene analysis in the context of predictive coding using experimental data, exemplar models, and the
phenomenon of perceptual multistability.
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Panayiota Poirazi Institute of Molecular Biology and Biotechnology (IMBB),
Foundation for Research and Technology-Hellas (FORTH),
Heraklion, Crete, Greece

K2 — Information coding with dendrites: lessons from computational models

The goal of this presentation is to provide a set of predictions generated by biophysical and/or abstract mathe-
matical models regarding the role of dendrites in information processing, learning and memory across different
brain regions. Towards this goal | will present modelling studies from our lab — along with supporting experimental
evidence — that investigate how dendrites may be used to facilitate the learning and coding of both spatial and
temporal information at the single cell, the microcircuit and the neuronal network level. | will briefly present early
work on how the dendrites of individual CA1 pyramidal neurons may allow a single cell to act as a 2-stage neural
network classifier [1], thus massively increasing the storage capacity of the neural tissue [2]. | will then discuss
how such dendritic nonlinearities may enable stimulus specificity in individual PFC pyramidal neurons during
working memory [3] and underlie the emergence of sustained activity at the single cell and the microcircuit level
[3,4]. The role of dendrites in memory phenomena will be assessed using circuit models of the Dentate Gyrus
implementing pattern separation [5,6] as well as hippocampal models capable of learning associative memories
and linking them across time [7]. This presentation aims to highlight how dendrites are likely to serve as key
players in different memory functions.

References:

[1] Poirazi P, Brannon T., Mel B.W. (2003) Pyramidal Neuron as 2-Layer Neural Network. Neuron, 37: 989-999.

[2] Poirazi P., Mel B.W. (2001) Impact of Active Dendritic Processing and Structural Plasticity on Learning and
Memory. Neuron 29: 779-796.

[3] Sidiropoulou K., Poirazi P. (2012) Predictive features of persistent activity emergence in regular spiking and
intrinsic bursting model neurons. PLoS Comp. Biol. 8(4): €1002489.

[4] Papoutsi A., Sidiropoulou K., Poirazi P. (2014) Dendritic Nonlinearities Reduce Network Size Requirements
and Mediate ON and OFF States of Persistent Activity in a PFC Microcircuit Model. PLoS Comput. Biol.
31: 10(7):e1003764.

[5] Chavlis S., Petrantonakis P., Poirazi P. (2017) Dendrites of dentate gyrus granule cells contribute to pattern
separation by controlling sparsity. Hippocampus 27(1): 89-110.

[6] Danielson N.B., Turi G.F., Ladow M., Chavlis S., Petrantonakis P.C., Poirazi P., Losonczy A. (2017) In Vivo
Imaging of Dentate Gyrus Mossy Cells in Behaving Mice. Neuron 93(3):552-559.

[7] Kastellakis G., Silva A.J., Poirazi P. (2016) Linking memories across time via neuronal and dendritic over-
laps in model neurons with active dendrites. Cell Reports 17 (6): 1491-1504.
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Erik De Schutter Okinawa Institute of Science and Technology Graduate University,
Okinawa, Japan

K3 — Molecular models of the early and late phases of bidirectional plasticity at cere-
bellar synapses

Synaptic plasticity at the parallel fiber to Purkinje cell synapse has been studied extensively, both experimentally
and computationally. The initial focus was on long-term depression (LTD) evoked by concurrent parallel fiber and
climbing fiber activation, but more recently experimental studies have emphasized the behavioral importance of
long-term potentiation (LTP) triggered by exclusive parallel fiber activation. Expression of these forms of plasticity
is based on changes in the number of AMPA receptors in the postsynaptic density (PSD), LTD leading to a
decrease and LTP to an increase. As such, this plasticity is bidirectional and can be described as the outcome
of a competition by opposing processes. Through studies of hippocampal plasticity we have come to understand
the importance of all aspects of the AMPA receptor cycle in bidirectional synaptic plasticity, with LTD increasing
both diffusion out of the PSD and endocytosis of receptors and LTP favoring insertion of receptors that diffuse
to the PSD. Moreover, the endosomal cycle is quite important because most endocytosed AMPA receptors are
rapidly recycled to the postsynaptic membrane. Calcium influx is always the first step in synaptic plasticity, but
this influx is brief compared to the tens of minutes required to reach the maximum change in synaptic strength.
For cerebellar LTD it is well established that the calcium signal activates a MAP-kinase based positive feedback
loop that is essential for the early phase of LTD. We have built a completely new molecular model of bidirectional
cerebellar plasticity that replicates experimental findings, including the dual role of nitric oxide in LTP and LTD.
LTD requires activation of the MAP-kinase based positive feedback loop and this activation is controlled by CaM
kinase. An emergent property of the model is an automatic shutdown of the positive feedback loop, corresponding
to the end of the early phase. In a second, simpler model, we have explored how the early phase can transition
into a stable late phase by simple manipulations of the endosomal cycle. Unfortunately, experimental data on
these processes is less complete, particularly about possible spatial restriction to single spines.
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K4 — | am therefore | think

This overview of the free energy principle offers an account of embodied exchange with the world that associates
neuronal operations with actively inferring the causes of our sensations. Its agenda is to link formal (mathemati-
cal) descriptions of dynamical systems to a description of perception in terms of beliefs and goals. The argument
has two parts: the first calls on the lawful dynamics of any (weakly mixing) ergodic system — from a single cell
organism to a human brain. These lawful dynamics suggest that (internal) states can be interpreted as modelling
or predicting the (external) causes of sensory fluctuations. In other words, if a system exists, its internal states
must encode probabilistic beliefs about external states. Heuristically, this means that if | exist (am) then | must
have beliefs (think). The second part of the argument is that the only tenable beliefs | can entertain about myself
are that | exist. This may seem rather obvious; however, it transpires that this is equivalent to believing that the
world — and the way it is sampled — will resolve uncertainty about the causes of sensations. We will consider the
implications for functional anatomy, in terms of predictive coding and hierarchical architectures, and conclude by
looking at the epistemic behaviour that emerges using simulations of active inference.
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F1 Mixture processing in a biophysical model of the early olfactory system of honeybees
Ho Ka Chan*, Thomas Nowotny

School of Engineering and Informatics, University of Sussex, Brighton, UK

In their natural environment, Insects often encounter complex mixtures of odors in their natural environment. It
is an important open question whether and how the processing of complex mixtures of multi-component odors
differs from that of simpler mixtures or single components. To approach this question, we built a full-size model
of the early olfactory system of honeybees, which predicts responses to both single odorants and mixtures. The
model is designed so that olfactory response patterns conform to the statistics derived from experimental data
[1] for a variety of its properties. It also takes into account several biophysical processes at a minimal level,
including processes of chemical binding and activation in receptors, and spike generation and transmission
in the antennal lobe network. We verify that key findings from other experimental data not used in building
the model [2-4] are reproduced in it. In particular, we replicate the strong correlation among receptor neurons
and the weaker correlation among projection neurons observed in experimental data [1,2] and show that this
decorrelation is predominantly due to inhibition by interneurons. By simulation and mathematical analysis of our
model, we demonstrate that the chemical processes of receptor binding and activation already lead to significant
differences between the responses to mixtures and those to single component stimuli. On average, the response
latency of olfactory receptor neurons at low stimulus concentrations is reduced (See Figure 1A) and the response
patterns become less variable across concentrations (See Figure 1B) as the number of odor components in the
stimulus increases. These effects are preserved in the projection neurons. Our results provide hints that the
early olfactory system in insects may be particularly efficient in processing mixtures, which corresponds well to
the observation that chemical signaling in nature predominantly utilizes mixtures.
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Figure 1: A. The average response latency decreases with the number of components in the odor stimulus. The
effect is most significant when the stimulus concentration is low. B. The pairwise correlation, averaged over all
ORNSs, between the response patterns at low and high concentration increases with the number of components
in the odor stimulus.
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F2 Heterogeneous layers stabilize propagation of a multiplexed spike signal in a feedforward net-
work

Donggi Han'*, Sungho Hong?
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Feedforward networks are ubiquitous structures in neural systems and have been studied in many contexts such
as models for signal transmission [1,2], architectures for rich information processing [3], etc. However, most
studies have ignored an important property commonly observed in real feedforward networks: neurons in one
layer have contrasting characteristics from those in other layers. For example, the cerebellar granule cells are tiny
and relatively simplistic neurons while their postsynaptic targets, the Purkinje cells, are much bigger, complex,
and therefore have very different intrinsic properties. What would be the role of such layer-to-layer differences in
neural circuits?

Here we address this question by simulation of a model feedforward network, inspired by a recent experimental
study on the Drosophila olfactory system [4]. In this model, all the adjacent layers have Morris-Lecar neurons
with different excitability types from each other and therefore different computational functions. If one layer has
cells with class | excitability, which behave like integrators of inputs, neurons in the adjacent layer are of class I,
which act as coincidence detectors [5], and vice versa.

We found that spikes from one layer evoked a response in next layer neurons better when they had the same
excitability type. However, in a deep feedforward network, this caused gradual accumulation of signal distortion,
leading to the undesirable responses in deep layers that all the neurons either fired synchronously or became
silent, as seen in classical studies (e.g., [1]). On the other hand, the network with heterogeneous layers demon-
strated a novel signal transformation property as observed in [4] (Fig. 1A), and showed stable propagation of a
signal into deep layers with a preserved temporal fidelity and spike count (Fig. 1B, C). We analyzed the result by
using a phase space method in [1] and showed how mixing different coding schemes enables this feature (Fig.
1C). We conclude that heterogeneous layers in feedforward neural networks can be a mechanism for optimal
information transfer.
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Figure 1: A. Firing rate of input (black, L1), integrator (red, L2), and coincidence detector (blue, L3) neurons.
Note that a peak of L3 firing precedes that of L2, as observed in [4]. B. Stable spike propagation in a network
with many heterogeneous layers. C. Layer-to-layer change in the SD of spike times and spike count of B.
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F3 Modeling grid fields instead of modeling grid cells
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Grid cells are neurons found in the rodent medial entorhinal cortex. They take their name from their astonishing
firing patterns: grid cells are active specifically in certain regions of physical space, called grid fields, that form
a triangular grid tesselating the space explored by the animal. While experiments have been investigating the
geometrical properties of grid fields [1], computationalists have tried to explain them by neural network models.
However, these models still fail to account for some of the experimental results, in particular how two distinct grid
patterns are integrated when two compartments are merged into one (Wernle et al, in preparation).

We take a different approach: instead of modelling grid cells, we directly model single grid fields as point objects
interacting with each other and with the environment’s borders (see Figure 1A). This description is motivated by
the way grid patterns are naturally considered as geometrical objects. We thus consider a system of interacting
objects evolving as colloidal particles on a substrate [2]. First we consider only grid fields from one grid cell,
then we add coupling between several cells. We simulate the system with varying forms and intensity of the
interactions. The simplicity of the model allows us to test many such possibilities and their outcome in several
‘experimental’ setups.

We show that under certain conditions the model does reproduce the behavior of experimental grid fields (see
Figure 1B). These conditions imply repulsion between fields, the involvement of a large number of fields, interac-
tion between grid cells and with the walls. We are able to reproduce observed data from experiments in merged
environments. We can also make predictions for setups not tested experimentally yet. The question that then
naturally arises is how to connect our description at the level of grid fields to models at the level of grid cells. We
show how our grid-field model puts constraints on models of the underlying grid cells. Conversely, we discuss
how existing grid-cell models can be described at the level of grid fields.

Figure 1: General idea of grid field modeling. A. Schematic representation of the model. A given grid field (red)
feels the influence of other grid fields (blue) as well as the borders (grey) plus a viscosity force (green). B.
Example of a resulting pattern in a square box, converted into a firing rate map.

In conclusion, tackling the issue of grid patterns from a grid-field perspective provides new insights on their
formation. Beyond grid cells, our work raises the question of the ultimate purpose of a model and the subtle
interplay between description and explanation.
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o1 Impact of axon initial segment geometry on excitability
Sarah Goethals, Romain Brette*
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In most vertebrate neurons, action potentials are triggered at the distal end of the axon initial segment (AlS).
They are then transmitted to the soma where they are regenerated and further propagated in the dendritic tree.
The AIS position and length can be altered by changes in electrical activity, suggesting a strong link between
AlIS geometry and excitability. We studied theoretically the influence of AIS geometry on the somatic thresh-
old for AP initiation. For this purpose, we solved the cable equation with appropriate boundary conditions in a
cylindrical axon model. Our theoretical analysis shows that the somatic threshold depends logarithmically on the
surfacic sodium conductance density and that increasing either the AIS length or the AIS start position lowers
the threshold. We confirmed our prediction with numerical simulations in a more detailed neuron model. Our
analysis suggests that either a longer or a more distal AlS increases excitability, which supports a current hy-
pothesis that the AIS is preferably isolated from the large capacitance of the soma. Secondly, we examined how
the AIS geometry influences the peak axonal current that is transmitted to the soma at spike initiation. Again
we used cable analysis to study this current in a two-cylinder model that represents the main geometrical fea-
tures of a thick-tufted layer 5 pyramidal neuron. Our analysis shows that in order to obtain somatic spikes with
a given speed, the AIS position should be proportional to the diameter of the apical dendrite raised to the -3/2.
We confirmed this theoretical result with numerical simulations of a more detailed model. In addition, correlation
analysis of layer 5 pyramidal neurons morphology confirms this theoretical prediction [1]. Our previous analyses
suggest that the AIS geometry is finely tuned for successful spike transmission to the soma. More generally,
neural systems tend to be efficient in their use of resources [2], which suggests that AIS geometry might also be
optimized for minimal energy consumption. As the energy consumption at subthreshold voltages is proportional
to the number of channels, we asked whether there exists an AIS geometry that minimizes the total number of
sodium channels. For this purpose, we used variational techniques to calculate the AlIS geometry that minimizes
total Na conductance, for a given spike threshold and axonal current.

Conclusion
Our theoretical analysis shows that AIS geometry has a strong impact on several aspects of excitability including
energy consumption, which suggests that the AIS morphology is functionally tuned and possibly optimized.
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02 Can integrate-and-fire models simulate robust nheuromodulation?
Tomas van Pottelbergh*, Rodolphe Sepulchre
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By controlling the state of neuronal populations, neuromodulators ultimately affect behaviour. A key neuromodu-
lation mechanism is the alteration of neuronal excitability via the modulation of ion channel expression. This type
of neuromodulation is normally studied via conductance-based models, but those models are computationally
challenging for large-scale network simulations needed in population studies. Integrate-and-fire models provide
a computationally advantageous alternative, but such models are only partially successful in robustly capturing
modulation between firing patterns.

In this work, we propose a modelling framework that extracts the qualitative properties of heuromodulation to
produce neuromodulable and computationally efficient neuron models. Our framework is based on dynamic |-V
curves, i.e. instantaneous |-V curves in a certain timescale [1]. These dynamic I-V curves make the connection
between qualitative conductance-based models and integrate-and-fire models: how a change in ion channel
conductance can be related to a change of dynamic |-V curves and subsequently to a parameter change in the
reduced integrate-and-fire model. We focus on the modulation between tonic firing and bursting as an example.
We argue that this modulation crucially relies on the co-regulation of two points of high sensitivity (i.e. excitability)
in two distinct timescales. The points of high sensitivity are local extrema in the |-V curves and correspond to an
exact balance of positive and negative feedback. Those signatures have a direct correlate in the fast-slow phase
portraits: a hysteretic V-nullcline in the presence of one (fast) balance, and a mirrored hysteresis in the presence
of both a fast and a slow balance [2]. The classical quadratic integrate-and-fire model captures the fast balance,
but does not account for the slow one.

The simple idea underlying the proposed multi-quadratic integrate-and-fire model (MQIF) is to allow for several
distinct balance points in an integrate-and-fire model. An integrate-and-fire model with two balance points is
shown to robustly capture the neuromodulation between spiking and bursting, opening novel computational av-
enues for large-scale simulation of neuromodulated populations. The robustness and modulation properties of
this integrate-and-fire model are in sharp contrast to those of existing (generalised) integrate-and-fire models,
which lack the slow excitability.
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Sholl analysis has been an important technique in dendritic anatomy for over sixty years [1]. In counting the
number of dendritic branches at a given distance from the soma, the Sholl intersection profile is often taken as
a crucial measure of dendritic complexity; it has been used in a broad range of applications, from estimating the
expected number of possible synapses [2], to evaluating the changes in structure induced by pathologies [3].

We have shown that Sholl intersection profiles can be predicted by two more basic measures: the domain
spanned by the dendritic arbor and the angular distribution of how far dendritic segments deviate from a direct
path to the soma (Figure 1C). The first measure is principally determined by axon location and hence microcircuit
structure [4]; the second arises from optimal wiring [5]. These two measures allow Sholl analysis to be given a
more functional interpretation across all of its applications.
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Figure 1: The dendrite spanning field predicts the Sholl intersection profile of a Purkinje cell. A. Rat Purkinkje cell
[6] and schematic of Sholl analysis: the number of times the dendrite intersects with a gold arc gives the value
of the Sholl intersection profile at that radius. B. The spanning field of the above cell. C. Root angle distributions
and (inset) joint angular and euclidean connection probabilities for the Purkinje cell (top) and artificial dendrites
with different balances between wiring and delay costs (bottom). D. Sholl intersection profiles for rat Purkinje cell
(left) and mouse dentate gyrus granule cell [7] (right): observed (gold), predicted by just the spanning field (red),
and predicted by the spanning field and root angles (blue dashed).
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Characterizing the input-output transformations of single neurons is critical for understanding neural computation.
Single-neuron models have been extensively studied, ranging from simple phenomenological models to complex
multi-compartment neurons. However, linking mechanistic models of single-neurons to empirical observations of
neural activity has been challenging. Statistical inference is only possible for a few neuron models (e.g. GLMs),
and no generally applicable, effective statistical inference algorithms are available: As a consequence, compar-
isons between models and data are either qualitative or rely on manual parameter tweaking, parameter-fitting
using heuristics or brute-force search [1]. Furthermore, parameter-fitting approaches typically return a single
best-fitting estimate, but do not characterize the entire space of models that would be consistent with data (the
posterior distribution).

We overcome this limitation by presenting a general method to infer the posterior distribution over model pa-
rameters given observed data on complex single-neuron models. Our approach can be applied in a ‘black box’
manner to a wide range of single-neuron models without requiring model-specific modifications. In particular, it
extends to models without explicit likelihoods (e.g. most single-neuron models). We achieve this goal by building
on recent advances in likelihood-free Bayesian inference [2]: the key idea is to simulate multiple data-sets from
different parameters, and then to train a probabilistic neural network which approximates the mapping from data
to posterior distribution.

We illustrate this approach using single- and multi-compartment models of single neurons: On simulated data, es-
timated posterior distributions recover ground-truth parameters, and reveal the manifold of parameters for which
the model exhibits the same behaviour. On in-vitro recordings of membrane voltages, we recover multivariate
posteriors over biophysical parameters, and voltage traces accurately match empirical data. Our approach will
enable neuroscientists to perform Bayesian inference on complex neuron models without having to design model-
specific algorithms, closing the gap between biophysical and statistical approaches to single-neuron modelling.
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To generate appropriate behavior, the brain must predict the future state of the world from past sensory informa-
tion. Taking the salamander visual system as an example, at the minimum such predictions need to compensate
for the 50-80 ms processing time of the retina [1] as well as the time for a motor response to be generated.
Making these predictions requires leveraging the spatiotemporal structure of the natural world, a computation
that is performed efficiently at the first stage of visual processing, in populations of retinal ganglion cells [2].
Neurons downstream of the retina infer predictions about object motion from the firing of their inputs, but to do
so, downstream cells must learn to read out predictive information from the retinal activity.

More concretely, stimulus predictive information in a sensory population is defined as the mutual information of
particular patterns of spiking across retinal ganglion cells (RGCs) with the future stimulus [2]. We consider the
output of a downstream model neuron that receives weighted inputs from several RGCs. By constructing moving-
bar dynamics that contain both predictable and stochastic motion, we can visualize the predictive information in
readout spiking as the difference between the prior stimulus distribution (Figure 1A, gray) and the spike-triggered
stimulus distribution: the larger the difference, the more informative the spike. In this example, the readout neuron
was informative of the future stimulus (Figure 1A), but most other readouts were not (not shown). Even for
an experimenter with a well-controlled sensory input, finding this optimal readout in the space of all possible
readouts is difficult. In more realistic circumstances, the organism must make predictions about the future state
of complex natural stimuli from the retinal spiking activity alone (Figure 1B).

Here we address whether biologically plausible learning rules can find readout weights that transform RGC input
into predictive downstream output. Input activity from the RGCs was previously recorded in the salamander retina
in response to a natural movie (Figure 1B). We first show that internal predictive information, the information that
the readout has about its own future input, is correlated with stimulus predictive information, so that becoming
more predictive of its inputs drives the readout neuron to encode more information about the future stimulus.
Starting from a set of random weights connecting the RGCs to the readout neuron, we allow the weights to
evolve via spike timing-dependent plasticity. Across many groups of RGCs, we find that learned readouts convey
80% of the possible predictive information for groups of four cells, but only 30% for groups of ten cells. This
decrease reflects a compressibility limit of predictive information and suggests an optimal pooling size for cells
downstream from retina.
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Figure 1: A. Spike-triggered average of future stimulus position and velocity for a particular readout of population
spiking activity with high predictive information. B. Raster plots for simultaneously recorded retinal ganglion cells
(RGCs) in response to a naturalistic movie featuring swimming fish. These are used to drive learning simulations.
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According to the theory of efficient coding, sensory systems are adapted to represent natural scenes with high
fidelity and at minimal metabolic cost. Testing this hypothesis for sensory structures performing non-linear com-
putations on high dimensional stimuli is still an open challenge. Here we develop a method to characterize the
sensitivity of the retinal network to perturbations of a stimulus. Using closed-loop experiments, we explore se-
lectively the space of possible perturbations around a given stimulus. We then show that the response of the
retinal population to these small perturbations can be described by a local linear model. Using this model, we
computed the sensitivity of the neural response to arbitrary temporal perturbations of the stimulus, and found a
peak in the sensitivity as a function of the frequency of the perturbations. Based on a minimal theory of sensory
processing, we argue that this peak is set to maximize information transmission. Our approach is relevant to
testing the efficient coding hypothesis locally in any context where no reliable encoding model is known.
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Large synapses, i.e the neuromuscular junction (NMJ) or the calyx of Held, have been invaluable model synapses
that have significantly advanced the field of synaptic transmission. No generative model approach can faithfully
retrieve quantal parameters from synapses with a large number of release sites (N). Here we propose an expec-
tation maximization (EM) method that is based on particle smoothing (PS) to extract quantal parameters from
large N synapses. In contrast to an existing EM-based approach [1], using Baum-Welch (BW) which scales with
a complexity of N* and hence cannot retrace quantal parameters of synapses with hundreds of release sites,
our method is independent of N and therefore suitable for large synapses. First, our model was validated on syn-
thetic data. As shown in figure 1, all parameters © = N, p, ¢, o, 7 were faithfully retrieved. Next, we applied the
model to the Drosophila NMJ, which is predicted to harbor hundreds of release sites. The model predicted quan-
tal parameters that are in line with parameters predicted by two empirical approaches (variance-mean analysis
and cumulative amplitude analysis of postsynaptic currents). In contrast to these two techniques, which require
data recorded under conditions of high release probability (p), our method is independent of p or stimulation pro-
tocol. Given the genetic tractability of this synapse, our theoretical approach is expected to help linking quantal
parameters to molecular function.

300

300
B -Data

-Model

200 200

E [nA]

100 100

0 10 20 30 0 10 20 30

Figure 1: A. Postsynaptic currents at the Drosophila NMJ, 50 trains of 30 presynaptic action potentials at 60 Hz
compared with model generated data from the fitted parameters at each stimulation step s; number of release
sites N = 710, release probability p = 0.44, quantal content ¢ = 0.74 nA , background noise o = 13.22 nA and
refilling time constant 7 = 59 ms. B. Comparison of the mean and standard deviation.
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Models such as sparse coding [1] have shown that natural scene statistics can be used to predict basis units
with Gabor-like receptive fields close to those observed in V1 simple-cells. Since the inputs to these models
are natural images captured using a single camera, their outputs are monocular. Recently, attempts have also
been made to exploit statistics of stereo-images of natural scenes [2]. The resulting bases units show binocular,
Gabor-like receptive fields with population statistics close to those observed in V1. Although these models are
able to replicate certain aspects of V1 binocular populations, they are either supervised, or mimic the result of
learning from natural datasets, but not the process.

We propose a novel method of deriving monocular and binocular units through unsupervised learning from
natural stereoscopic datasets using spike-timing-dependent-plasticity (STDP). Using the Hunter-Hibbard dataset
[2], we first employed ON/OFF-center difference-of-Gaussian convolutions to mimic LGN responses (Figure 1.A).
The responses were thresholded and converted to spike-latencies using a monotonically decreasing function.
This ensured that the most activated units fired first, while the less active units fired late, or not at all. We then
trained an STDP based neural network using 1x1 degree spatial pools from the aforementioned LGN layer. The
network was composed of integrate-and-fire neurons and incorporated a lateral inhibition scheme. Finally, we
characterized the receptive field in each eye by fitting Gabor functions. Our results (Figure 1.B) showed that
most units developed Gabor-like receptive fields similar to those observed in V1 simple cells, with a continuum of
ocular dominance from pure monocularity to perfect binocularity. In line with single-unit recordings in primates,
disparity selectivity was principally observed along the horizontal dimension, where it ranges between -0.5°and
0.5°. Neurons also showed selectivity to vertical disparity, although it was less pronounced. When tested with
phase-shifted sine gratings, the units also showed disparity-tuning curves similar to those observed in the cat
visual system.
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Figure 1: A. Schematic of the processing pipeline. B. Five representative neurons (one per column) before and af-
ter convergence. Rows 1,2: Left and right eye receptive fields before convergence; Rows 4,5: The corresponding
receptive fields after convergence; Rows 3,6: Weights before and after convergence.
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The brain processes time-varying input, but is it not known if its dynamical state is optimal for this task. Indeed,
recurrent and randomly coupled networks of rate neurons display a rich internal dynamics near the transition to
chaos [1], which has been associated with optimal information processing capabilities [2, 3, 4]. In particular, the
dynamics becomes arbitrarily slow at the onset of chaos similar to critical slowing down. The interplay between
time-dependent input signals, network dynamics, and the resulting consequences for information processing are,
however, yet poorly understood.

We here present a completely solvable model that allows us to investigate the effect of time-varying input on the
transition to chaos. We analytically obtain the phase diagram spanned by the coupling strength and the input
amplitude: External drive shifts the transition to chaos to significantly larger coupling strengths than predicted by
linear stability analysis. The intermediate regime is absent in time-discrete networks [5] and only exists in their
more realistic time-continuous counterparts. This novel dynamical regime combines locally expansive dynamics
with asymptotic stability. We investigate sequential memory [5] and analytically show that memory capacity is
optimal within the novel regime. Because it is unclear if cortex operates in such a computationally beneficial
regime, we develop a finite-size mean-field theory which relates the statistics of measured covariances to the
statistics of connections, in particular the spectral radius of the connectivity matrix. The theory shows that the
large dispersion of spike count covariances across pairs of neurons, observed in massively parallel recordings,
is an indicator that cortex indeed operates close to the breakdown of linear stability (see Figure 1).
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Figure 1: Distribution of spike count cross-covariances across neurons in macaque motor cortex. The low mean
and large standard deviation (blue dashed horizontal lines) of experimentally observed cross-covariances be-
tween spike counts (left) are explained by a model network (right, shading indicates density of histogram) with a
large spectral radius (R = 0.9) of the connectivity matrix. Red curves: analytical prediction for mean and standard
deviation. Data from 155 neurons mostly located in layer 5 of macaque motor cortex (M1). Data courtesy of A.
Riehle and T. Brochier.
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Animal decisions not only reflect current sensory information but are also shaped by recent experience. There is
however little understanding about the determinants of these history-dependent decision biases. We used rats in
a novel two-alternative forced choice auditory discrimination task, in which the probability to repeat the previous
stimulus category was varied in blocks of trials. Rats adapted to this environment by developing a strategy that
capitalized on the serial correlations of the stimulus sequence: a bias towards repeating the same response built
up after correct repetitions, and conversely an alternation bias developed after correct alternations. Strikingly,
both repetition and alternation biases disappeared after an incorrect trial, irrespective of the number of previous
correct trials performed previously.

A GLM analysis revealed that rats decisions in each trial relied on: (1) the current sensory stimulus; (2) a lateral
bias towards (away from) the side of recently rewarded (unrewarded) responses on the last 5-10 ftrials, i.e.
win-stay-lose-switch strategy; (3) a novel and strong transition bias that reinforced recent correct transitions
(repetitions vs. alternations). Intriguingly the transition bias had no impact on choice after error trials. Subsequent
analysis showed that the value of the bias was not reset but simply ignored after an error, and it was recovered
after the first subsequent correct trial. Thus, the weight of the history-dependent transition bias could be flexibly
and transiently put aside after error choices when possibly the reliability of the internal model was questioned.
This nonlinear effect could not be captured by the GLM fitted to both correct and incorrect trials and was not
present on the lateral bias, i.e. it was specific of the transition bias. We thus built a latent generative model
of rats decisions, whereby lateral and transitions biases are updated at each trial, while the influence of the
latter on current decisions is gated by a reward-dependent confidence signal. When fitted to the data, the model
accounted quantitatively for all described behavioral effects: in particular, the absence of a transition bias after
incorrect choices was due to a reset of the confidence signal. Because the value of the transition bias did not
reset after errors but it kept the information about whether the animal would repeat or alternate, a single correct
trial was sulfficient to increase the confidence and recover the accumulated choice bias. Overall, we show that
history-dependent biases in rodent perceptual choices reflect consistent strategic adaptations to behavioural
outcomes.
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The prefrontal cortex (PFC), key for higher order cognitive processes, exhibits spontaneous activity that is al-
tered in schizophrenia [1]. Cortical acetylcholine (ACh) release modulates PFC activity via nicotinic acetylcholine
receptors (NAChRs) [2] specifically expressed within a hierarchical circuit of inhibitory neurons within layer II/11]
[3]. Parvalbumin (PV) interneurons, expressing o7 nAChRs subunits [2], target pyramidal cells axosomaticaly,
exerting divisive effects on their activity. Somatostatin (SOM) interneurons, expressing both o7 and 32 nAChRs
subunits [2], target the dendrites of pyramidal cells, exerting substractive inhibition [4]. The a5 nAChRs subunits
are expressed only by vasoactive intestinal polypeptide (VIP) interneurons, that preferentially inhibit the SOM
cells. In vivo two-photon imaging showed that neural activity of PFC in mice is characterized by synchronous
ultra-slow fluctuations, with alternating periods of high and low activity [5]. Genetic deletion of specific nAChRs
subunits disrupted these ultra-slow fluctuations, leading to changes in synchrony and duration of activity states.
Furthermore, mice expressing a human polymorphism in the o5 nAChRs subunits (a¢5SNP) associated with high
risk for nicotine addiction and schizophrenia [6, 7], show reduced spontaneous activity in the PFC that is reversed
by nicotine [3]. Using a circuit modeling approach, we studied the roles of distinct GABAergic interneurons in the
generation of synchronous ultra-slow fluctuations. In order to study the effects of substractive vs. divisive inhibi-
tion on bistable dynamics in the pyramidal neuron, by the SOM and PV interneuron populations respectively, we
used population firing rate modelling incorporating both mechanisms [8], and simulated the effects of nAChRs
knock outs. With our model, we could fully account for the changes seen in resting state dynamics under the ge-
netic modifications. We further predict that SOM interneurons play dominant role in the changes of activity-state
structure seen in mutant mice, and in the restaration of activity to basal levels recorded in «5SNP mice under
nicotine application.
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Cortical spreading depression (CSD) is one of the most common abnormalities in biophysical brain functioning.
We have proposed a minimalistic model that reproduces the main dynamical features of cortical spreading de-
pression dynamics and takes into account CSD and cerebral blood flow (CBF) coupling. Despite the fact that
there are many mathematical models describing the CSD, most of them do not take into consideration the role
of redistribution of CBF. In contrast to previous modelling attempt [1] which was chosen as the template, we
focus on the role of CBF redistribution during the formation and propagation of wave front. The flowchart of the
developed model is shown in Figure 1. The model includes six dynamical variables: activator v and inhibitor w,
extracellular potassium z, blood vessel radius r and upstream blood pressure p, and available neuron energy u
(see Figure 1).

The main model features: (1) we have modified and extended the components of basic model [1] that stand for the
energy balance; (2) the proposed model counts the relation between the extracellular potassium concentration
and the radius of the nearby located blood vessel: we take into account the effect of spatial coupling (functional
hyperemia) by means of weighted summation of vasodilatory driving force over some distance from neuron;
(3) we propose a lumped description for hemodynamic spatial coupling, being the direct result of blood flow
redistribution between different areas fed from the single upstream arterial vessel.

cartical neuron

excitable available
subsystem + energy
-— -
V. S W u
_ perfusion
diffusion ¢+ T"'
extracellular
potassium
z blood fi
ood flow
perivascular | + + +
potassium - +
blood vessel | upstream
radius blood pressure
r P
short-dfs'tance long-distance
coupling coupling

Figure 1: The schematic representation of flowchart of the developed model.

Based on the results of the numerical simulation we can conclude that the proposed model: (1) shows qualita-
tively reasonable results comparing with the experimental data: the uncorrelated noise-induced firing at rest; the
persistent neuronal depolarization during the active phase of CSD; the depressed state afterwards, when model
medium temporary losses the excitability and does not response on noisy stimuli; (2) reproduces main spatial
patterns known for cortical spreading depression, migraine waves and spreading depolarization events observed
in stroke and brain injuries; (3) predicts the formation of stationary dissipative Turing-like structures, formed due
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to the substantially different type of spatial relation — tissue perfusion. The role of perfusion in the formation of
the structures was elucidated.
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The basic premise of this study is that the coherence of neural activity is required for the coordination of motor
control. Motor control involves a number of brain centres, most notably the cortex, the basal ganglia, thalamus
and cerebellum. How are messages coordinated between the different centres during complex movements is an
open question. Following [1], we examined the hypothesis that different neural sub-populations follow a commu-
nication via coherence hypothesis. That is, for two neural sub-populations to communicate their activity must be
coherent and therefore exhibit some form of mathematical synchronization.

As detailed in [2], we performed deep-brain measurements on patients undergoing treatment for Parkinson’s dis-
ease (n=6) and dystonia (n=7). During a brief period after implantation of the electrodes, we were able to record
the activity from either the sub-thalamic nucleus (STN) or the globus pallidus interna (GPi). These recordings
constitute local field potential (LFP) recordings. Patients were asked to perform one cycle of wrist movement last-
ing approximately one second in duration. The movements were executed either as externally cued or through
self-initiation. Simultaneous to local field recordings measured at either the STN or GPi, electroencephalographic
signals (EEG) were recorded over the motor cortex. For LFP, recordings were processed by subtracting the ac-
tivity from adjacent electrodes. EEG was recorded in a bipolar montage (either C3-Cz or C4-Cz). We believe
that the activity we record is local in origin and not due to volume conduction, or due to the use of a common
reference. Our results show that during movement, and only during movement, is there significant coupling be-
tween changes in the power of the activity with changes in coherence between the basal ganglia and the motor
cortex. The changes can happen such that for beta band activity (20-30 Hz) both power/coherence is high pre
and post movement, but low during course of movement. For gamma activity (30+ Hz), we observe the opposite:
only during movement do we observe a coupling of increased power with increased levels of coherence either
between GPi-cortex or STN-cortex. The coupling of power with coherence is not artifactual.

To better understanding the origins of these findings, we need to develop suitable mathematical models of cou-
pled neural ensembles. We have been extending the Kuramoto model of coupled oscillators for application to
this problem. Two distinct neural ensembles (in the basal ganglia and in the cortex) have neurons that are each
interconnected. Moreover, the two ensembles are further connected to each other through additional links. What
we can show is that an increase in power in either ensembles will lead to increased amplitude/phase coherence
between the two ensembles just as found experimentally. This thus provides a first model of motor coordination
between cortex and basal ganglia. Establishing the necessity for coherence in motor coordination suggests new
strategies for neuromodulation similar to how functional electrical stimulation works to restore peripheral motor
function.
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Communication through coherence (CTC) postulates that stimulus information transmission is enhanced be-
tween oscillating neural populations in a favorable phase relationship, and suppressed otherwise. For example,
in the case of visual cortical gamma-band synchronization during selective attention, V1 spikes arriving to V4
during its excitability peaks should be much more likely to elicit further spikes, resulting in effective signal gating;
V1 spikes arriving during excitability troughs should fail or at least be less effective in evoking further activity. Fur-
ther, it has been observed that average gamma power increases with attention, however, this increase appears
to occur in bursts, rather than a constant oscillation. If the CTC hypothesis holds, one should expect descriptive
gamma phase and amplitude dependent modulations in stimulus information routing in V4.

To explore this idea, we analyzed neural data from a previous study [1], recorded from V4 superficial layers
in macaques performing a visual spatial attention task. The task required the animals to attend one of two
dynamic stimuli over an extended time period. Crucially, each stimulus was superimposed with its own fluctuating
luminance signature, irrelevant to the behavioral task. This allowed us to quantify the information content | of each
stimuli conveyed by the physiological signal, by computing spectral coherence between each stimuli’s luminance
signal and V4 activity. To assess modulation effects at multiple population scales, we analyzed both LFP and
spiking activity. Using gamma-band activity extracted from LFP, we dissected both LFP and spiking neural activity
into phase/amplitude-specific components. We then computed the information contribution of each stimulus to
these components, giving us the opportunity to assess phase/amplitude signal gating effects.

The results show that information routing is modulated by the gamma phase for both LFP and spiking activity. In
LFP, we found the information routing at excitability peaks I,...x is significantly higher than at excitability troughs
Iirougn for both attended and non-attended stimuli (Figure 1A). We did not see this effect for spikes, which still
show significant gamma phase dependence but without a preference for a specific phase across recording ses-
sions. Comparing the stimuli content during high gamma activity I, against low gamma activity I;5,,y, We
found that the spiking activity exhibits significant gating increase for the attended stimulus and decrease for the
non-attended stimulus (Figure 1B), however, we do not find this effect in the LFP. In summary, our study confirms
basic predictions on the nature of selective information processing, namely its modulation in dependence on
phase and amplitude of LFP gamma activity. Surprisingly, consistent phase modulation was only found in LFPs,
while consistent amplitude modulation was only seen in spiking activity, indicating that the mechanisms imple-
menting CTC are not yet fully understood. In particular, our results strongly motivate a refinement of current CTC
models, requiring an approach encompassing different levels of complexity capable of reproducing local spiking
and global population activity from different laminar sources.
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Patterns of brain activity are observed to be highly conserved across states of arousal, and between task and
non-task conditions. This strongly suggests that these are natural modes (eigenmodes) of the brain, which are
excited in different ways under different circumstances. Neural field theory (NFT), which averages over brain
microstructure, is ideally suited to deriving brain eigenmodes and interpreting them in terms of underlying physi-
ology. It also provides means of systematically interrelating structure and function via these eigenmodes.

Here, NFT is used to predict the eigenmodes of the continuous cortical surface, including interhemispheric con-
nections. For comparison, eigenmodes of a discrete cortical connection matrix are calculated by standard matrix
procedures. Mode energies and symmetry properties are used to constrain interhemispheric conductivities and
physiological properties of the cortex. Eigenmodes are then used to derive underlying effective and functional
connectivities from system transfer functions and two-point correlations of background activity, respectively.

Neural field eigenmodes are shown to occur in a hierarchy closely related to that of the eigenmodes of a sphere,
with added symmetries induced by bihemispheric structure. A close correspondence is also found with the eigen-
modes of an anatomical connection matrix, confirming the validity of the neural field approach. The results
demonstrate that the brain is in a near-critical state, consistent with estimates from electroencephalographic
spectra. It is found that each hemisphere receives near-balanced inputs, with approximately 15 percent of net
inputs coming from the contralateral hemisphere, 73 percent from the ipsilateral one, and 12 percent from the
environment, meaning that it is in a highly instrospective state. Most activity is predicted to be in symmetric
modes, in accord with experiment.

NFT allows structure and activity to be unequivocally interrelated, including the correlations used to define func-
tional connectivity matrices. Eigenmode decomposition of these matrices enables underlying effective connec-
tivities to be systematically derived from functional connectivities, and vice versa, and related to resulting activity
patterns. This means that relatively easily observed correlations can be used to infer both average structure and
the strengths of effective connectivities that it supports in a noninvasive manner.

In summary, physiologically-based NFT thus explains and unifies multiple phenomena relating to structure, func-
tion, and activity via eigenmodes. This allows analysis of activity and structure in terms of the natural dynamic
modes of the system, rather than ones that are defined via statistical signal analyses that do not incorporate

physiology.
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Research on canonical microcircuits conceptualizes findings of the recursive occurrence of neural populations
and coupling patterns in vertically and horizontally structured divisions (i.e. cortical columns) of the cerebral
cortex [1]. The profound description and examination of the link between canonical architectures and the asso-
ciated functionality promises a better understanding of higher level functions which emerge from the interaction
of canonical microcircuits. Fundamental for this interaction is the embedding canonical microcircuits in hierarchi-
cal networks [2], mediating both bottom-up and top-down signals to specific neuronal populations. Here, com-
putational studies can help to formulate hypotheses about constitutive mechanisms, which are experimentally
identifiable in the neural substrate.
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Figure 1: A. Adaptive dynamical shift of a perceptual threshold in a hierarchical configuration of two interacting
neural mass models, mimicking canonical microcircuits. B. A bottom-up target input (light grey) excites the lower
area only after previous application of a priming stimulus (dark grey).

We use a neural mass model [3], where a pyramidal cell population (Py) receives negative feedback from an in-
hibitory interneuron population (IIN) and positive feedback via a secondary excitatory population of interneurons
(EIN), representing neurons in layer IV. We systematically apply transient afferent inputs, modeled by pulses of
various magnitude and duration, as bottom-up signals to the EIN or as top-down signals to the Py [2] and monitor
the behavior of the Py. These response behaviors are classified as: a) nonresponsive for sub-threshold transient
deflections, b) transfer for supra-threshold transient deflections, and ¢) memory for sustained supra-threshold
deflections and are mapped to the stimulation parameter range.

Single-channel stimulations, either bottom-up (to EIN) or top-down (to Py), lead to differential response behaviors,
where strong and long bottom-up stimulations are preferably stored (memory behavior), in contrast to top-down
signals, which predominantly show transient deflections. In a concomitant stimulation, constant top-down input
modulates the modelOs sensitivity to pulsed bottom-up stimulation in favor of the memory response behavior.
We employ this modulatory influence in a hierarchical network (Fig. 1A) comprising two canonical microcircuits to
show a conceivable neural mechanism for the dynamic adaptation of a perceptual threshold. In this configuration,
a target stimulus is not able to excite a perceptual area, unless a priming stimulus tunes the networkOs sensitivity.
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The differential response behaviors to top-down and bottom-up stimuli indicate the functional role of separate
input channels in canonical microcircuits. Exemplarily, we show one constitutive operation emerging from inter-
acting microcircuits, but expect many more mechanisms relevant in cognitive disciplines like language or mem-
ory, such as stimulus selection or structure building computations. Further, the present results in the hierarchical
setup demand a further evaluation in light of predictive coding where important findings of neural communication
have been put forward.

References

[1] Douglas JD, Martin KA: Mapping the Matrix: The Ways of Neocortex. Neuron 2007, 56:226-238.

[2] Felleman DJ, Van Essen DC: Distributed hierarchical processing in the primate cerebral cortex. Cere-
bral Cortex 1991, 1:1-47.

[3] Spiegler A, Kiebel SJ, Atay FM, KnSsche TR: Bifurcation analysis of neural mass models: Impact of ex-
trinsic inputs and dendritic time constants. Neurolmage 2010, 52:1041-1058.

67



O17  Learning structure of 3D objects with cortical columns
Subutai Ahmad*, Yuwei Cui, Marcus Lewis, and Jeff Hawkins
Numenta, Redwood City, CA, USA

The neocortex is organized in cellular layers. Connections between layers run mostly perpendicular to the surface
of the neocortex, which suggests a columnar pattern of activation across layers. The cells in some layers also
send their axons across long distances parallel to the surface of the neocortex, which suggests a laminar pattern
of activation across multiple columns. The vertical and horizontal spread of axons is a ubiquitous feature of all
neocortical regions.

In this study, we propose a network model that utilizes both intra-column and cross-column connections for robust
object learning and recognition (Figure 1). The model consists of a set of cortical columns, where each cortical
column processes a different subset of the sensory input space. An object consists of a set of component features
at particular locations on the object. Each cortical column learns an object by forming feedforward connections
from its component features to a set of active neurons in a different cellular layer. After learning, sensation of a
sequence of object features leads to activations of the corresponding neural population representing the object.

Since features can be shared among multiple objects, information received by a single cortical column is of-
ten ambiguous. The model uses auto-associative connections to integrate many sensations over time and can
converge onto unique object representations once sufficient feature are sampled. The recognition speed and ac-
curacy can be improved by simultaneously considering multiple cortical columns with lateral connections, where
each column learns feedforward connections independently and learns cross-column lateral connections accord-
ing to Hebbian rules. The lateral inputs target distal dendritic segments. Although they are not strong enough to
directly activate a neuron, neurons with both lateral input and feedforward input will fire earlier and prevent other
neurons from responding [1]. The cross-columnar connections bias each column to form a representation that is
consistent with the partial knowledge of all the interconnected columns. We show that objects can be recognized
faster and that each cortical column can store more objects by using cross-column connections. The model is
consistent with a large body of anatomical and physiological evidence and provides a number of predictions that
can be tested in future experiments.
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Figure 1: A. We consider the problem of object recognition with a set of cortical columns. Each column receives
sensory input from a different sensor (e.g., different finger). A first layer of the network transforms the raw sensory
input into sparse distributed representations that corresponds to object features. The second layer receives
feedforward inputs from the first layer. It recognizes an object by converging onto a stable activation pattern
through lateral connections. B. The recognition speed increases as a function of column number. C. Retrieval
accuracy of object during testing vs. the number of learned objects. More objects can be learned with networks
with more cortical columns.
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018 Influence of network topology on spreading of epileptic seizure
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In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other
close or distant brain regions. Correctly delineating the epileptogenic and the propagation zone is essential for
successful resective surgery. In particular, the stereotaxic EEG (SEEG) is used to edge the resection zone.
Nevertheless, the propagation pathways of epileptic seizures are still largely unknown. We utilize a specific
dynamical model for epilepsy, the Epileptor model [1], to predict the recruitment network given the seizure origins
and the structural brain connectivity. Thus, we try to understand the role played by the topology in constraining
the recruitment process and we suggest a paradigm for epileptic surgery that relies on minimal invasiveness
and maximum effectiveness. In particular, we schematize the brain network dynamics in terms of neural mass
models able to captures the details of the autonomous slow evolution of interictal and ictal phases; these mass
models are coupled among them and the coupling terms model the effective presence of nerve pathways and
fibers among different brain regions [2]. In this framework it is possible to identify the minimal number of local
disconnections of the epileptogenic zone that are necessary to stop seizure propagation via the application
of linear stability analysis and, therefore, to define the optimal set of links to be cut in order to stop seizure
propagation (see Figure 1). In order to demonstrate the potential use of this framework in practice, we apply
our methods to structural connectivity matrices derived from patients affected by partial epilepsy. In all cases
a partial disconnection, that counts for the resection of few pathways, is sufficient to stop seizure activity in
the brain. Therefore we demonstrate that seizure spreading is thus supported and enhanced by the underlying
topology and that a disconnection procedure, if well addressed, can become a fruitful procedure to improve the
success rate of epilepsy surgery.

A B

Figure 1: A: Standard resection technique, where the entire epileptogenic zone (EZ) is removed during surgical
operation. Blue links represent the outgoing connections of the EZ and are completely removed during the
current surgical procedures. B: Lesioning depicts the minimal number of links that are sufficient to be removed
(magenta) in order to stop the seizure, versus the total number of outgoing links from the EZs (blue) that are
removed during the resection of an entire EZ. Cyan links represent in both panels the full connectivity of the
network.
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019 A model-based approach for detecting multiple change points in multivariate spike count data
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Neural data often consist of multiple single unit recordings in the form of spike count time series. These time
series are often highly nonstationary, where statistical moments, such as firing rates, vary to potentially encode
features of the experimental paradigm, like changes in external input or different task phases. Changes in the
firing rates may be sudden or gradual, and their time scale and onset may reflect information regarding neural
computations, such as learning [1] or the accumulation of sensory evidence [2].

Here we develop an approach for detecting and parametrising multiple changes in multivariate spike count data
within the statistical framework of State Space Models (SSM) [3]. The model assumes a nonlinear, nonstation-
ary, autoregressive Gaussian process that captures the underlying latent neural dynamics. However, given their
discrete, nonnegative nature, assumptions of normality are not guaranteed to produce consistent estimates of
spike count statistical moments. Instead, the Gaussian process generates spike counts by a Poisson observa-
tion function. Both latent trajectories in phase space and latent model parameters, in addition to observation
model parameters, are estimated by a 3-stage Expectation-Maximisation (EM) procedure [4]. The latter relies
on Newton’s method [5] to maximise, under constraints, a global Laplace approximation [6] of spike-count data’s
log-likelihood, given the SSM and its parameters. The dimensionality of the latent model equals the number
of unknown nonstationary events, termed change points, and is selected by a cross-validation procedure. Ob-
servations, on the other hand, are generally of a much higher dimension than the latent dynamics. Due to this
substantial dimensionality reduction [7], latent trajectories, thus, offer a parsimonious representation of the most
relevant features in neural dynamics.

The estimation procedure is first tested on simulated data, to assure that the latent states and model parameters
are correctly identified in comparison to the ground truth. As a real data example, the model is fitted to multi-
ple single unit recordings from rat medial prefrontal cortex neurons during an operant rule switching task. The
resulting reconstruction of the underlying dynamics will allow matching the neural correlates of learning to their
behavioral counterpart, by relating behavioral changes to population-wide change points, as estimated by the
model.
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020 Geppetto: an open source visualisation and simulation platform for neuroscience
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SYale University, New Haven, CT, USA

Geppetto (geppetto.org) is an open-source web-based platform to explore and simulate neuroscience data and
models. The platform, originally designed to support the simulation of a cell-level model of C. elegans as part of
the OpenWorm project [1], has grown into a generic framework suitable for various neuroscience applications,
offering out of the box solutions for data visualisation, integration and simulation. Geppetto is today used by Open
Source Brain (opensourcebrain.org) (Figure 1.A), to explore and simulate computational neuroscience models
described in NeuroML version 2 with a variety of simulators and by the Virtual Fly Brain (virtualflybrain.org)
(Figure 1.B) to explore and visualise anatomy (including neuropil, segmented neurons and gene expression pat-
tern data) and ontology knowledge base of Drosophila melanogaster. Geppetto is also being used to build a
new experimental Ul for the NEURON simulation environment [2][3] (Figure 1.C) based on Python and Jupyter.
WormSim (wormsim.org) (Figure 1.) embeds Geppetto to let users explore dynamic mechanical and electro-
physiological models of C. elegans produced by the OpenWorm project. Geppetto is capable of reading and
visualising experimental data in the NWB format (nwb.org) to allow experimental and computational neurosci-
entists to share and compare data and models using a common platform. Geppetto is freely available, well
documented and has an active user community. Interested potential users can try out the latest version of the
platform at live.geppetto.org.

Wormgim

Figure 1: Gepetto in different deployments.
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021 Position is coherently represented during flickering instabilities of place-cell cognitive maps in
the hippocampus

Lorenzo Posani'*, Simona Cocco!, Karel JeZzek?, and Rémi Monasson'
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Place cells in hippocampus exhibit sharp spatially-related firing fields, which are formed when the animal explores
new environments and are retrieved, as memories, each time the rat is placed back in those specific settings.
Knowledge of the environment-specific set of place fields (map) allows for the application of Bayesian statistics
to infer the position of the rodent from neuronal activity (Figure 1B, 1C). Likewise, functional-connectivity models,
based only on neural correlations, i.e. with no knowledge of place fields or position, can identify the expressed
map as a function of time (Figure 1A) [1]. We apply both these inference procedures to CA3 recordings from
a recent "teleportation" experiment [2], in which instantaneous switches between the identity of two familiar
environments trigger the instability of the recalled memory state, which flickers back and forth between the two
corresponding maps (Figure 1A, 1E). Our analysis shows that the rat position is not accurately inferred during the
unstable periods, under conventional approach relying on brain processing only the external input information
(i.e. environment cues, Figure 1B, 1D: red curve). However, if the position is inferred using the template reflecting
the decoded inner state of the network, the position error is significantly reduced, reaching values comparable to
the stable conditions (Figure 1C, 1D: blue curve). Results suggest that position is robustly encoded in CA3, even
during periods of conflict or ambiguity in the input information resulting in global map changes on fast dynamical
time scales.

L
——Decoded map
lew map

-H‘\ Lo

teleportation

TR ldlh Old map
a T ]\i
-decadmg error

teleportation —
ﬂmkpers \r_:/
T TR T 1 L 1 4
e 0 5 10 15 20 25

J E time after teleportation (s)

o
s

T interted X]

| —lnIerred Y

posltlon error 1cm)

flickers fraction

5 -0 s
time after teleportation (s) time after teleportation (s)

Figure 1: Position inference during flickering instabilities. A. decoded environment (log-likelihood difference) as a
function of time after a teleportation in CA3. Note the flickering dynamics in the 0-5 sec interval. B. Inferred vs.
real positions of the animal; place fields corresponding to light conditions were used for the inference. Freely-
moving rat in a 60x60 cm box. C. same as B with position inferred using the place fields associated to the
decoded map (sign of AL in panel A). D. positional errors averaged over 15 teleportation events; dashed line
indicates the level of error for stable conditions (no light switches). E. fraction of flickering time bins (AL-decoded
map differs from light conditions) as a function of time after the light switch.
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Workshops

Wi+ Neuronal Oscillations: Mechanisms and Functionality
Room K.202, Wed and Thur 9:00 to 18:00

Horacio G Rotstein, New Jersey Institute of Technology
Frances Skinner, Krembil Research Institute
Vassilis Cutsuridis, University of Lincoln

Oscillations at various frequency ranges have been observed in several brain structures (hippocampus, entorhi-
nal cortex, olfactory bulb and others). They are believed to be important for cognitive functions such as learning,
memory, navigation and attention. These rhythms have been studied at the single cell level, as the result of the
interaction of a neuron’s intrinsic properties, at the network level, as the result of the interaction between the par-
ticipating neurons and neuronal populations in a given brain region, and at higher levels of organization involving
several of these regions. Recent advances in this field have benefited from the interaction between experiment
and theory, and models with varying levels of detail.

The purpose of this workshop is to bring together modelers, experimentalists and theorists with the goal of
sharing and discussing their current results and ideas on the underlying mechanisms that govern the generation
of these rhythms at various levels of organization, and their functional implications.

An additional goal is to discuss what we mean by an explanation in the context of this workshop. To this end,
speakers will be encouraged to address this issue from the perspective of Aristotle’s four causes (efficient, mate-
rial, formal and final causes). Please see 'What is computational neuroscience? (XVI) What is an explanation?’.

Speakers:
» Frances Skinner (Krembil Research Institute, Canada) "Theta oscillations in the hippocampus: generation

mechanisms"

+ John White (Boston University, USA) "Synaptic contributions to the theta rhythm in the isolated hippocampal
formation”

» Marianne Bezaire (Boston University, U.S.A.) "Spontaneous theta oscillations arise in a detailed, large-
scale model of the rodent hippocampal CA1 subfield"

+ Vassilis Cutsuridis (University of Lincoln, U.K.) "Memory formation and replay in the hippocampal CA1
microcircuit”

» Jose Guzman (IST, Austria) "The synaptic microcircuit of pattern completion in the hippocampal CA3 net-
work"

* Leonid Rubchinsky (Indiana University Purdue University Indianapolis, USA) "Temporal patterns on neural
synchrony: observations, mechanisms, and functions”

» Dan Levenstein (NYU, USA) "Synchronized neocortical dynamics of the NREM slow oscillation: from mech-
anism to function”

» Francesco Battaglia (Donders Centre for Neuroscience, Radboud Universiteit Nijmegen, The Netherlands)
"Oscillatory interaction between hippocampus and prefrontal cortex during memory consolidation”

» Marlene Bartos (University of Freiburg, Germany) TBA
+ Christoph Borgers (Tufts University, USA) "Some thoughts on the effects of synchrony"

» Carmen Canavier (LSU Health Sciences Center, USA) "Different gamma mechanisms coexist in the same
excitatory/inhibitory network architecture”

* Mark Cunningham (University of Newcastle, U.K.) "Mechanisms underlying the generation of human neo-
cortical gamma frequency oscillations”

+ Jeremie Lefebvre (University of Toronto, Canada) TBA

+ Adrien Peyrache (McGill University, Canada) "Oscillatory dynamics in the limbic thalamo-cortical network
reveal subcortical information flow to and from the hippocampus”

+ Horacio Rotstein (New Jersey Institute of Technology, USA) "A conceptual framework for the study of
resonance in neuronal systems"
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» Ausra Saudargiene (Neuroscience Institute of the Lithuanian University of Health Sciences & Vytautas
Magnus University, Kaunas, Lithuania) TBA

+ Bijan Pesaran (New York University, USA) "Neural coherence supports functional inhibition during move-
ment coordination”
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w2 Methods of Information Theory in Computational Neuroscience
Room C.101, Wed and Thur 9:00 to 18:00

Joseph T. Lizier, University of Sydney

Viola Priesemann, Max Planck Institute for Dynamics and Self-organisation
Justin Dauwels, Nanyang Technological University

Taro Toyoizumi, RIKEN Brain Science Institute

Alexander G Dimitrov, Washington State University

Lubomir Kostal, Academy of Sciences of the Czech Republic

Michael Wibral, Goethe University, Frankfurt

Methods originally developed in Information Theory have found wide applicability in computational neuroscience.
Beyond these original methods there is a need to develop novel tools and approaches that are driven by prob-
lems arising in neuroscience. A number of researchers in computational/systems neuroscience and in informa-
tion/communication theory are investigating problems of information representation and processing. While the
goals are often the same, these researchers bring different perspectives and points of view to a common set of
neuroscience problems. Often they participate in different fora and their interaction is limited.

The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuro-
science and to exchange ideas and present their latest work. The workshop is targeted towards computational
and systems neuroscientists with interest in methods of information theory as well as information/communication
theorists with interest in neuroscience.

For an up to date list of talks and schedule please see http://bit.ly/cns2017itw

Speakers:
+ Selin Aviyente (Michigan State University) “Directed information: application to EEG during cognitive con-
trol”
+ Lionel Barnett (University of Sussex) “Information transfer in continuous and discrete time”
+ Karl Friston (University College London) “Active inference and artificial curiosity”
» Renaud Jolivet (University of Geneva) “Energy-efficient information transfer at synapses”

» Lubomir Kostal (Academy of Sciences of the Czech Republic) “Reference frame independence as a con-
straint on the mutual information decomposition”

» Joseph T. Lizier (The University of Sydney) “An estimator for transfer entropy between spike trains”

+ Daniele Marinazzo (University of Ghent) “Synergetic and redundant information flow detected by unnor-
malized Granger causality: application to resting state fMRI”

+ Jil Meier (Delft University of Technology) “The epidemic spreading model and the direction of information
flow in brain networks”

+ Viola Priesemann (Max Planck Institute for Dynamics and Self-organization, Goettingen) TBA
+ Adria Tauste (Universitat Pompeu Fabra) “Directed information flow within the thalamo-cortical network”

+ Tatjana Tchumatchenko (Max Planck Institute for Brain Research, Frankfurt) “Information coding of mean
and variance modulating signals in cortical neurons”

» Taro Toyoizumi (RIKEN Brain Science Institute) “A local learning rule for independent component analysis”
+ Raul Vicente (University of Tartu) TBA
+ Plus additional contributed talks ...
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w3 Recent Methods and Analyses for Large-scale Neuronal Population Recordings
Room C.102, Wed and Thur 9:00 to 18:00

Michela Chiappalone, Istituto Italiano di Tecnologia, Genova
Valentina Pasquale, Istituto Italiano di Tecnologia, Genova
Pierre Yger, Institut de la Vision, INSERM, Paris

Understanding how assemblies of neurons encode information requires recording large populations of cells in
the brain. In recent years, progress in population calcium imaging and multichannel electrophysiology opened
the possibility to record from hundreds or even thousands of neurons simultaneously. While these techniques
offer unprecedented chances to monitor large neural circuits, they also push for the design of new algorithms to
gather and process information from such high-dimensional datasets.

This two-day workshop will gather leading experimentalists and theoreticians to discuss latest computational
methods and analyses used to process such large-scale neuronal population recordings, both in vivo and in
vitro. Focusing on high-density electrophysiology and calcium imaging, it will review recent advances in neuroin-
formatics research, including spike sorting techniques and characterization of neural assemblies’ spatio-temporal
activity. It will be a unique opportunity to address various questions such as:

» How to enhance the robustness of new algorithms identifying spikes, and/or design a proper validation
framework ensuring the quality of the data?

» How to detect neural assemblies’ activity and correlations both in space and time, and possibly link them
to sensory perception and behavior?

» What are the links, from a signal processing point of view, between calcium imaging and high density
electrophysiology recordings?

Speakers:
» Matthias Hennig (University of Edinburgh, Scotland) “Spike sorting for large scale multielectrode arrays:
efficient methods and lessons learnt”
* Felix Franke (ETH Zurich, Switzerland) “How prewhitening can improve spike sorting performance”

* Nick Steinmetz (University College London, UK) “Recording large, distributed neuronal populations with
Neuropixels electrode arrays in behaving mice”

« Pierre Yger or Olivier Marre (Institut de la Vision, France) “Towards online accurate spike sorting for thou-
sands of channels”

« Thomas Deneux (UNIC, CNRS, France) “Spike inference from calcium signals: MLspike algorithm and
general perspectives”

+ Marius Pachitariu (University College London, UK) “Kilosort and Suite2p: robust and scalable frameworks
for neural activity extraction in large-scale recordings”

» Stephen J. Eglen (University of Cambridge, UK) “Detecting pairwise correlations in high-density recordings:
open science in action”

+ Adrien Peyrache (McGill University, Canada) “Millisecond synchrony in the thalamo-cortical network of the
brain’s navigation system: a mechanism for efficient information transmission?”

» George Dimitriadis (Sainsbury Welcome Centre, UK) “Understanding large-scale neural recordings: Ground
truth data sets and the T-sne visualizations tool”

+ Gaute Einevoll (NMBU, Norway) “Biophysical modeling of benchmarking data for validation of methods for
analysing electrophysiological data”

* Yannick Bornat (IMS Bordeaux, France) “Low latency hardware computing to use electrode array inputs in
closed loop experiments”

« Ulisse Ferrari (Institut de la Vision, France) “Closed-loop estimation of retinal network sensitivity reveals
signature of efficient coding”

 Valentina Pasquale (Istituto Italiano di Tecnologia, Italy) “Measuring similarity of endogenous and evoked
activity patterns in cultured cortical networks”
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» Sonja Griin (Forschungszentrum Jilich, Germany) “Analysis of massively parallel spike data for higher-
order correlations”

» Arno Onken (Istituto Italiano di Tecnologia, ltaly) “Matrix and tensor factorizations for analyzing neural
population activity”

« Paolo Bonifazi (lkerbasque, Bilbao, Spain) “Sparse synchronizations and neuronal network failures: astro-
cytes replacement recovers global synchronizations in Atm-deficient cerebellar circuits in vitro”



w4 New Advances in Theoretical Tools for the Study of Large-scale Neural Systems
Room K.101, Wed 9:00 to 18:00 and Thur 9:00 to 12:30

Simona Olmi, Institute of Complex Systems- CNR
David Angulo-Garcia, Aix-Marseille University
Benjamin Lindner, Humboldt University Berlin

New advances in mathematical and computational neurosciences require the development of mathematical tools
able to explain the dynamical evolution observed at different spatiotemporal scales. Our idea is to focus on the
specific issue of meso/macroscopic dynamical behaviours in neural systems, given their relevance for population
coding and computation. This workshop aims at discussing some of the most recent analytical techniques and
mathematical tools used to derive the evolution of neural populations and its emergent dynamics, with the hope
of understanding how features of meso/macroscopic systems such as local dynamics, heterogeneity, noise and
topology shape their response. With this workshop we expect to bridge the gap between models and data and to
further shed light on the inter-relation between structure, dynamics and function of the brain circuitry by studying
the transitions between different collective states.

Speakers:

« Olivier Faugueras (INRIA and LJAD, France) “Coping with correlations in the analysis of the thermodynamic
limit of neuronal networks”

» Ernest Montbrié (Universitat Pompeu Fabra, Spain) “Firing rate equations require a spike synchrony mech-
anism to correctly describe fast oscillations in inhibitory networks”

+ Alex Roxin (Campus de Bellaterra, Barcelona, Spain) “Microscopic and macroscopic states in networks of
recurrently coupled spiking neurons”

» Srdjan Ostojic (Ecole Normale Supérieure, Paris, France) “From dynamics to computations in recurrent
random networks with low-rank connectivity structure”

» Maurizio Mattia (Istituto Superiore di Sanita, Italy) “Low-dimensional dynamics of cortical networks explain-
ing slow-wave activity and its transition to the asynchronous state.”

« Tilo Schwalger (Ecole polytechnique fédérale de Lausanne, Switzerland) “Mesoscopic dynamics of inter-
acting neural populations of spiking neurons”

+ Boris Gutkin (Ecole Normale Supérieure, Paris, France) “Phase response curves for emergent network
oscilations”

+ Tatyana Sharpee (Salk Institute for Biological Studies, CA) “Dynamics of large-scale recurrent networks”

+ Raffaella Burioni (University of Parma, Italy) “Chaos and correlated avalanches in excitatory neural net-
works with synaptic plasticity”

» Magnus Richardson (University of Warwick, United Kingdom) “Negative-feedback control of cortical activity
by the neuromodulator adenosine”

» Marc de Kamps (University of Leeds, United Kingdom) TBA

» Davide Bernardi (Bernstein Center for Computational Neuroscience Berlin, Germany) “Optimal detection
of single-cell stimulation in large random networks of integrate-and-fire neurons”

+ David Angulo-Garcia (University of Aix-Marseille, France) “Lazarus effect: mechanism of neuron’s deacti-
vation and reactivation in sparse heterogeneous inhibitory neuronal networks”

+ Simona Olmi (Weierstrass Institute Berlin,Germany) “Exact firing time statistics of neurons driven by dis-
crete inhibitory noise”
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Theoretical Neuroscience in the Human Brain Project
Room K.201, Wed 9:00 to 18:00

Michele Giugliano, Universiteit Antwerpen

Alain Destexhe, Centre National de la Recherche Scientifique (CNRS)
Viktor Jirsa, Aix-Marseille University

This workshop gathers in an open and interactive forum, some of the Principal Investigators of the Theoretical
Neuroscience pillar (SP4) of the Human Brain Project. SP4 provides novel mathematical descriptions for multi-
scale representations of the brain and its components, from cellular to network levels. We propose to focus this
workshop on how microscopic processes in the brain express themselves parametrically on a higher level of
organisation, ranging from populations of neurons, entire brain areas to the whole-brain networks. Individual
talks will address and discuss the following research questions:

How can mean-field models achieve a direct faithful integration between mesoscopic and macroscopic
signals (e.g. LFP, EEG, fMRI)?

How can building blocks, including different signals of the brain, be incorporated into simplified descriptions
of dendrites, generic models, and synaptic plasticity?

What is the state-of-the art of large-scale models of the whole brain?

Which do recent advances in modelling synaptic plasticity and memory tell about computational properties
of the neocortex?

How close is our community to the modelling of the whole-brain?

Speakers:
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Alain Destexhe (UNIC, CNRS, Gif sur Yvette, and European Institute for Theoretical Neuroscience, Paris)
“Welcome note and Introduction”

Gaute Einevoll (Norvergian University of Life Sciences, As, Norway) TBA
Olivier Faugeras (Inria MathNeuro & TOSCA Teams, Sophia Antipolis, France) TBA

Michele Giugliano (Universiteit Antwerpen (Belgium) “The dynamical response properties of cortical neu-
rons”

Moritz Helias (Research Centre Juelich, Germany) “Towards a field theory for neuronal networks”

Viktor Jirsa (Institut de Neuroscience des Systemes, Marseille, France) “Translational neuroscience: from
bifurcations to personalized medicine”

Marc de Kamps (University of Leeds, UK) TBA

Marja-Leena Linne (Tampere University of Technology, Finland) TBA

Sacha van Albada (Jilich Research Centre, Jilich, Germany) “Spiking dynamics and inter-area interactions
in a supercomputational model of cortex”

Nicole Voges (Jilich Research Centre, Jilich, Germany) “Breaking the complexity barrier of analysis by
reproducible workflows”

Gorka Zamora-Lépez (Center for Brain and Cognition at Universitat Pompeu Fabra, Spain) “Relation be-
tween structural and functional brain connectivities: lessons learned and future plans within HBP”



W6

Computational and Experimental Advances in Cerebellum Research
Room K.102, Wed 9:00 to 18:00

Erik De Schutter, Okinawa Institute of Science and Technology
Yunliang Zang, Okinawa Institute of Science and Technology

With the improvement of experimental techniques, like in vivo patch-clamp recording and calcium imaging, we
have gained a deeper understanding of information processing in the cerebellum. However, experiment driven
computational modeling is still an indispensable tool to explore the implications of these findings. The purpose
of this workshop is to foster an active dialogue between experimentalists and modelers about cerebellar physi-
ology and function. Sufficient time will also be reserved to discuss how modeling and experiments can provide
interesting data relevant to each other.

Both experimental and computational work at the level of cerebellar single cell and network studies are included
in the workshop.

Speakers:

Arnd Roth (UCL, London, UK) “Untangling cerebellar circuits with scanning electron microscopy and fo-
cused ion beam milling”

Alessandro Barri (Institut Pasteur, Paris, France) “Temporal processing in the cerebellar cortex enabled by
dynamical synapses”

Coffee break

Philippe Isope (CNRS, Strasbourg, France) “How presynaptic short term dynamics influence Purkinje cell
discharge in the cerebellum”

Mario Negrello (Erasmus MC, Rotterdam, Netherland) “The origin of complex spike synchrony”

lan Duguid (University of Edinburgh, Edinburgh, UK) “Purkinje cell dendritic responses during self-paced
locomotion”

Yunliang Zang (OIST, Okinawa, Japan) “Voltage- and branch-dependent complex spike responses in Purk-
inje neurons”

Brandon Stell (CNRS, Paris, France), “In vivo imaging of Purkinje cell simple spikes”

Paul Chadderton (Imperial College London, London, UK) “Cerebellar processing of kinematic signals dur-
ing active whisking”
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w7 Principles and Applications of Extracellular Potentials
Room K.203, Wed 9:00 to 18:00

Michiel Remme, Humboldt University Berlin
Torbjoern Ness, Norwegian University of life Sciences
Gaute Einevoll, Norwegian University of life Sciences - University of Oslo

Electrical signals from the cortical surface of animals were recorded as early as 1875. The high-frequency part
(above ~ 500 Hz) of the recorded potentials provides information about the spiking activity of neurons located
around the electrode, whereas the low-frequency part, the &€ local field potentiala€™ (LFP), was found more
difficult to interpret. Recently, the interest in LFPs has undergone a resurgence. Key reasons are the growing ca-
pacity for streaming continuous data from multiple electrodes and the development of multicontact electrodes for
high-density recordings across areas and laminae. Further, the LFP captures key integrative synaptic processes
that cannot be measured by observing the spiking activity of a few neurons alone. The LFP is also a promising
signal for steering neuroprosthetic devices and for monitoring neural activity in human recordings because they
are more easily and stably recorded in chronic settings than are spikes. The goal of the workshop is to provide
a resume of the advances in understanding the generation of extracellular potentials through theoretical and
experimental approaches as well as on the consequences (e.g., ephaptic interactions) and the applications of
such signals (e.g., neuroprosthetic devices).

Speakers:

» Ad Aertsen (University of Freiburg) “Decoding motor cortex activity at multiple scales”

 Costas Anastassiou (Allen Institute for Brain Science) “Brain dynamics and associated electric fields during
physiological and pathological activity”

» Florian Aspart (Technical University of Berlin) “Frequency dependent polarization of pyramidal cells models
due to weak extracellular fields”

» Gaute Einevoll (Norwegian University of Life Sciences) “What can we learn from local field potentials
(LFPs)?”

+» Joshua Goldwyn (Ohio State University) “Generators of field potentials and (possible) ephaptic interactions
in the auditory brainstem”

» Sonja Griin (Research Centre Jilich, Aachen University) “Spatial and temporal LFP-LFP and spike-LFP
relationships”

» Paula Kuokkanen (Humboldt University Berlin) “Extracellular ITD potential and spike contributions in barn
owl’s nucleus laminaris”

+ Alberto Mazzoni (Scuola Superiore Sant’Anna) “Predicting risk attitude in conflictual economic tasks from
subcortical local field potentials”

+ Arno Onken (ltalian Institute of Technology) “Application of mixed vine copulas to model jointly neural spikes
and local field potentials”

« Bartosz Telenczuk (Centre National de la Recherche Scientifique) “Contributions of inhibitory and excitatory
neurons to the focal LFP in human and monkey”
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Fingerprints and Applications of Brain Dynamics Estimated from Neuroimaging Data
Room K.103, Wed 9:00 to 18:00

Matthieu Gilson, University Pompeu Fabra

Tim van Hartevelt, Oxford

The functioning of the brain relies on detailed interactions between specialized neuronal subsystems, imple-
menting joint segregation and integration of information such as sensory stimuli, memory tokens and intentions.
Nowadays, neuroimaging techniques (fMRI, EEG, MEG, etc.) provide indirect measurements of the neuronal
activity at the whole-brain level. Recent efforts have focused on extracting fingerprints of the measured brain
dynamics to discriminate between tasks, conditions (e.g., sleep vs. awake) or individuals. For example, given a
dynamic network model, whole-brain effective connectivity describes the interaction scheme between regions for
each condition, which can be quantitatively compared. The goal of this workshop is to review both data-analysis
methods and model-based approaches that have attacked this problem.

Abstracts available here: matthieugilson.eu/workshop_CNS2017.html

Speakers:

Henrique Fernandes (U Aarhus, Denmark) “Brain fingerprints of structural connectivity in health and dis-
ease”

Dante Mantini (KU Leuven, Belgium) “Detecting large-scale brain networks using high-density electroen-
cephalography”

Emily Finn (NIMH, Bethesda, USA) “Can we manipulate brain state to emphasize individual differences in
functional connectivity?”

Anish Mitra (U Washington, St Louis, USA) “Structured temporal sequences in spontaneous human brain
activity”

Demian Battaglia (INSERM, Marseille, France) TBA

Joana Cabral (Oxford U, UK) “Spontaneous switching between states of functional connectivity relates to
cognitive performance in healthy older adults”

Karl Friston (UCL, London, UK) “Dynamic causal modelling and network discovery”

Vicente Pallares (U Pompeu Fabra, Barcelona, Spain) “Whole-brain effective connectivity from fMRI resting-
state data discriminates between individuals”

Thomas Bolton (EPFL, Lausanne, Switzerland) “Shedding light on resting-state dynamic functional network
interactions by sparse coupled hidden Markov models”
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matthieugilson.eu/workshop_CNS2017.html

wo Emerging Models in Scientific Communication and Discussion
Room K.201, Thur 9:00 to 18:00

Romain Brette, Institut de la Vision, Paris

The academic publishing system is undergoing large changes towards a more open process, including the
increasing use of preprints, open access and open data repositories. This move is especially important for com-
putational and theoretical neuroscience, which require the availability of empirical data and model code. Several
recent experiments aim at opening the scientific discussion itself, where not only the article but also the reac-
tion of the community is published. Different models are being experimented; anonymous or signed reviews;
invited or spontaneous; led by authors or editors. It has also been suggested that the social web (e.g. reddit,
stackexchange) might provide relevant models.

In this workshop, we will explore emerging open models in academic publishing, with speakers presenting con-
crete experiments. Ample room will be reserved for discussion, in particular as it relates to concrete projects for
the computational neuroscience community.

Speakers:

» Romain Brette (Vision Institute, Paris), “Decoupling peer review and editorial selection”

» Paola Masuzzo (Ghent U, Belgium), “Do you speak open science?”

» Stephen Eglen (Cambridge U, UK, “Encouraging code and data sharing in neuroscience”

* Nicolas Rougier (Neurodegeneratives Diseases Institute, Inria, Bordeaux, France), “ReScience: Repro-
ducible science is good. Replicated science is better.”

» Brandon Stell (CNRS, Paris), “PubPeer, the online journal club”

» Thomas Ingraham (F1000 Research), “Reforming and modernizing wasteful and antiquated practices in
academic publishing”

» Frances Skinner (Krembil Research Institute, Canada), “eLife from a computational neuroscience insider’s
perspective”

 Thierry Galli (Institut Jacques Monod, Paris), “ASAPbio: accelerating science and publication in biology’
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W10 Reaction-diffusion Modeling for Neurobiology
Room K.203, Thur 9:00 to 18:00
Robert McDougal, Yale University
William W Lytton, SUNY Downstate
Avrama Blackwell, George Mason

Methods developed for Computational Systems Biology are finding increasing use in Computational Neuro-
science to understand the details of molecular cascades that influence neuron electrical activity — many and
likely most voltage-sensitive ion channels and ligand sensitive channels (synapses) are modulated by such cas-
cades. Additionally, examination of metabolomics requires consideration of the role of ATP in the functioning of
cells for applications to a variety of brain diseases. This workshop on reaction-diffusion modeling will provide
an introduction to the different types research questions being addressed using reaction-diffusion modeling. It
will also identify the various technical approaches and bottlenecks encountered in addressing reaction-diffusion
problems — stochastic vs deterministic simulation, simulation at 1D, 2D and 3D, tetrahedra vs cubic arrays, diffi-
culties of coupling to membrane mechanisms and challenges of parallelization.

Speakers:
» William W Lytton (SUNY Downstate) “Reaction-diffusion — foundations of multiscale modeling for the ner-
vous system”

+ Jim Schwaber (Thomas Jefferson) “Multiscale models of schizophrenia: gene networks to information in
neuronal network”

» Marja-Leena Linne (Tampere University of Technology) “Model order reduction techniques with applications
to describing reaction kinetics in neuronal and glial cells”

» Ekaterina Brocke (KTH Royal Institute of Technology) “Numerical discretization schemes for co-simulation
of coupled electrical - chemical systems”

» Davide Lillo (Marseille) “Slow variables of epileptiform activity: metabolic candidates and computational
properties”

+ Joanna Jedrzejewska-Szmek (George Mason) “NeuroRD as an approach for large scale modeling of neu-
ronal signaling pathways.”

+ Erik De Schutter (OIST) “Mesh based neuron modeling using STEPS: fully integrated stochastic molecular
and electrophysiological simulation in 3D”

+ Robert A McDougal (Yale) “Using NEURON to incorporate reaction-diffusion into cellular and network mod-
els”
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W11

Recent Developments in Epilepsy Modeling
Room K.103, Thur 9:00 to 18:00

Wim van Drongelen, The University of Chicago
Stephan A. van Gils, University of Twente

Epilepsy is a chronic disease of the CNS characterized by the occurrence of seizures. It affects 1% of the people
worldwide, and a significant proportion of the affected population does not respond to anticonvulsant drugs.
This limited success of anticonvulsant treatment is, in part, due to our limited understanding of the underlying
mechanisms that are responsible for the pathological behavior.

Translational research can play an important role in the unravelling of the mechanisms that may be responsible.
As more and better experimental data become available, it is important to be able to integrate these data with
modeling approaches in order to test hypotheses and to improve insight and produce more individualized models.

In this workshop a number of active researchers in the field come together to discuss their latest results ranging
from computational models on different scales to statistical methods to evaluate the use of biomarkers.

Speakers:
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Wim van Drongelen (U Chicago) “A recipe for seizures and a possible "pacebreaker
Stephan van Gils (U Twente) “The cross-scale effects of neural interactions during human neocortical
seizure activity"

Marc Goodfellow (U Exeter) “The role of networks in seizure generation”

Geertjan Huiskamp (U Medical Center Utrecht) and Jurgen Hebbink (U Twente) “Networks of early and
delayed responses to single pulse electrical stimulation of the cortex”

Viktor Jirsa (U Marseille) “On nature of seizure dynamics”

Bill Lytton (Downstate Medical Center) “Multiscale modeling of epilepsy: opportunities for drug discovery”
Stiliyan Kalitzin (SEIN) “Reconstructive computational modelling for identifying epileptic networks in neuro-
physiological data"

Wytze Wadman (U Amsterdam) “lonic homeostasis in epilepsy and the balance between excitation and
inhibition"

Fabrice Wendling ( U Rennes 1) “Novel stimulation protocols for probing neural network excitability: from
computational modeling to clinical application”



W12  Neuroscience Gateway: Enabling Developers and Users to Utilize Open High Performance Com-
puting Resources for Large Scale Simulations

Room K.101, Thur 14:00 to 18:00

Amit Majumdar, University of California San Diego, La Jolla
Subhashini Sivagnanam, University of California San Diego, La Jolla
Ted Carnevale, Yale University

The US National Science Foundation (NSF) funded Neuroscience Gateway (NSG) catalyzes computational neu-
roscience research by lowering the administrative and technical barriers that make it difficult for researchers to
access open supercomputer resources for large scale simulations and data processing. It provides free and open
access via a web portal and programmatically to supercomputers and time on the supercomputers is acquired
via the peer reviewed process of the Extreme Science and Engineering Discovery Environment in the US. It has
been in operation since early 2013, it has over 450 registered users. For the 2017 calendar year alone NSG
was awarded 10,000,000 core hours on various supercomputers in the US. NSG already has large number of
tools and software (NEURON, PGENESIS, NEST, BRIAN, PyNN, MOOSE, Freesurfer, R, Octave, Matlab etc.),
libraries (BluePyOpt, CARLsim, Tensorflow etc.) and pipelines (The Virtual Brain Pipeline etc.). NSG is open to
any user from anywhere in the world. Developers (of tools, libraries, and pipelines) and users utilize NSG exten-
sively. This workshop will bring together both the users and the developers of tools/libraries/pipelines associated
with the NSG for discussion of tools, software and research where HPC resources are utilized for neuroscience.

Speakers:

+ Amit Majumdar, Subhashini Sivagnanam (UC San Diego), Ted Carnevale (Yale University) “Introduction to
the Neuroscience Gateway”

 Salvador Dura-Bernal, William W Lytton (SUNY Downstate), Samuel A Neymotin (Brown U) “Parallel sim-
ulation of NEURON-based large scale network models”

« M Migliore, CA Lupascu, LL Bologna, R Migliore (Institute of Biophysics, National Research Council,
Palermo, ltaly) “Interaction of the Neuroscience Gateway with the Brain Simulation Platform of the Eu-
ropean Human Brain Project: practical examples”

» Padraig Gleeson (University College London) “Using models from the Open Source Brain repository on the
NSG portal infrastructure”

+ Alexandar Peyser (Julich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum
Jilich) “Towards exascale computing in neuroscience: NEST, NestMC and TVB”

» Christina M. Weaver (Franklin & Marshall College) “Modeling the effects of aging and neurodegeneration
on cortical and striatal neurons”

» Marianne Bezaire (Boston University) “Full-scale detailed modeling of a hippocampal CA1 network using
the Neuroscience Gateway ”
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W13  Cortical Function: Towards Understanding and Developing Integrative Theories
Room K.102, Thur 14:00 to 18:00
Hamish Meffin, The University of Melbourne
Anthony Burkitt, The University of Melbourne

Understanding how our brain computes and analyses sensory inputs from our external environment whilst en-
abling us to experience such rich and varied mental lives is one of the great scientific challenges of the 21st
Century. Recent advances have uncovered much about the cerebral cortex, with its 2-4mm thick sheet of neu-
rons having a consistent anatomical structure consisting of six well-characterised layers and network connec-
tivity. This workshop aims to look at what progress has been made in understanding how the cortex functions
and what general integrative principles underlie how it works and enable capabilities as diverse as sensory
perception, control of voluntary motor activity and high-level cognitive functions.

Speakers:
« Marcus Diesmann (Institute of Neuroscience and Medicine, Research Centre JAllich , Germany) “A brain-
scale model of macaque visual cortex at cellular and synaptic resolution”

 Jorge Mejias (Center for Neural Science , New York University, USA) “Large-scale models of cortical dy-
namics: neural communication and cognitive computations”

» Subutai Ahmad (VP Research Numenta, USA) “Why the neocortex has layers and columns, a theory of
learning 3D models of the world”

+ Stefan Mihalas (Allen Institute for Brain Science, USA) “Cortical circuits implement optimal context integra-
tion and its gating”
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W14  Postdoc Career Workshop
Room K.102, Thur 9:00 to 12:30

Joanna Jedrzejewska-Szmek, University of Warsaw

Computational neuroscience is a diverse, international and interdisciplinary community, which allows for diverse
and challenging career paths. This workshop is intended to provide postdocs and students in computational
neuroscience an opportunity to interact with panel of mentors with diverse careers in research and industry.
Mentors will discuss their own experiences, talk about different professional paths and funding opportunities,
working abroad, and give advice how to survive in both ’fat’” and ’lean’ funding periods. The panel of mentors
will also answer questions about available career choices, their advantages and disadvantages, and relative
importance of skills, work experience and teaching.

Speakers:

* Piotr Franaszczuk (US Army Research Laboratory Human Research and Engineering Directorate)
+ Eugene Izhikevich (Brain Corporation)

+ Malin Sandstrém (International Neuroinformatics Coordinating Facility (INCF))

+ Eleni Vasilaki (University of Sheffield)

Christina Weaver (Franklin & Marshall College)
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Poster Listing

Sunday Posters
Posters P1 - P104

Potential functions of different temporal patterns of intermittent neural synchronization
Leonid Rubchinsky'2*, Sungwoo Ahn®

"Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
2Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
3Department of Mathematics, East Carolina University, Greenville, NC, USA

NestMC: A morphologically detailed neural network simulator for modern high performance
computer architectures

Wouter Klijn!, Benjamin Cumming?, Stuart Yates?, Vasileios Karakasis®, and Alexander Peyser'*

'Jiilich Supercomputing Centre, Forschungszentrum Jdlich, Jillich, Germany
2Future Systems, Swiss National Supercomputing Centre, Ziirich, Switzerland
3User Engagement & Support, Swiss National Supercomputing Centre, Lugano, Switzerland

Automatically generating HPC-optimized code for simulations using neural mass models
Marmaduke Woodman', Sandra Diaz-Pier?*, and Alexander Peyser?

'Institut de Neurosciences des Systémes, Aix Marseille Université, Marseille, France
2Simulation Lab Neuroscience, Forschungszentrum Jiilich, Jilich, Germany

Conjunction or co-activation? A multi-level MVPA approach to task set representations
James Deraeve'*, Eliana Vassena?, and William Alexander’

"Department of Experimental Psychology, Ghent University, Ghent, Belgium
2Donders Center for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands

Understanding Adaptation in Human Auditory Cortex with Modeling
David Beeman'*, Pawel Kudela?, Dana Boatman-Reich®#, and William Anderson?

"Department of Electrical, Computer, and Energy Engineering1, University of Colorado, Boulder, CO, USA
2Department of Neurosurgery, Johns Hopkins School of Medicine,Baltimore, MD, USA

3Department of Neurology, Johns Hopkins School of Medicine,Baltimore, MD, USA

“Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA

Silent and bursting states of Purkinje cell activity modulate VOR adaptation
Niceto Luque’-?3*, Francisco Naveros*, Richard Carrillo*, Eduardo Ros*, and Angelo Arleo'23

TINSERM, U968, Paris, France

2Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris, France
3CNRS, UMR_7210, Paris, France

“Department of Computer Architecture and Technology, University of Granada (CITIC), Granada, Spain



P7

P8

P9

P10

P11

P12

P13

P14

The “convis” framework: Population Simulation of the Visual System with Automatic Differenti-
ation using theano

Jacob Huth'*, Timothee Masquelier?, and Angelo Arleo’

"Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
2CERCO UMR5549, CNRS, University Toulouse, France

Why does neural activity in ASD have low complexity: from a perspective of a small-world net-
work model

Koki Ichinose'*, Jihoon Park’, Yuji Kawai', Junichi Suzuki', Hiroki Mori?, and Minoru Asada’

' Department of Adaptive Machine Systems, Osaka University, Osaka, Japan
2Department of Computer Science, University of Cergy-Pontoise, Cergy-Pontoise, France

Phase-locked mode prediction with generalized phase response curve
Sorinel A Oprisan*, Dave | Austin

Department of Physics and Astronomy, College of Charleston, Charleston, SC, USA

Neural Field Theory of Corticothalamic Prediction and Attention
Tahereh Babaie'?*, Peter Robinson'?

"School of Physics, Faculty of Science, University of Sydney, Sydney, Australia
2Center of Excellence for Integrative Brain Function, Australian Research Council, Australia

Top-down dynamics of cortical pitch processing explain the emergence of consonance and dis-
sonhance in dyads

Alejandro Tabas'-?*, Martin Andermann®, André Rupp?®, and Emili Balaguer-Ballester®*

"Max Planck Institute for Human Cognitive and Brain Sciences, Saxony, Leipzig, Germany

2Dept. of Computing and Informatics. Faculty of Science and Technology, Bournemouth University, UK
3Biomagnetism Section, Heidelberg University, Baden-Wiirttemberg, Germany

“Bernstein Centre for Computational Neuroscience Heidelberg-Mannheim, Heidelberg University, Germany

Modeling sensory cortical population responses in the presence of background noise
Henrik Lindén'*, Rasmus K. Christensen', Mari Nakamura?, and Tania R. Barkat?

" Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
2Brain and Sound Lab, Department of Biomedicine, Basel University, Basel, Switzerland

Cortical circuits from scratch: A metaplastic rule for inducing lognormal firing rates in a cortical
model

Zachary Tosi'*, John Beggs?

"Cognitive Science, Indiana University, Bloomington, IN, USA
2Physics, Indiana University, Bloomington, IN, USA

Investigating the effects of horizontal interactions on RGCs responses in the mice retina with
high resolution pan-retinal recordings

Davide Lonardoni'*, Fabio Boi', Stefano Di Marco?, Alessandro Maccione', and Luca Berdondini’

"Neuroscience and Brain Technology Department, Fondazione Istituto Italiano di Tecnologia, Genova, ltaly
2Scienze cliniche applicate e biotecnologiche, Universita dell’Aquila, LAquila, Italy
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Calcium base plasticity rule can predict plasticity direction for a variety of stimulation paradigms
Joanna Jedrzejewska-Szmek'*, Daniel Dorman'2, and Kim Avrama Blackwell'-?

"Krasnow Institute, George Mason University, Fairfax, VA, USA
2Bioengineering Department, George Mason University, Fairfax, VA, USA

Unstructured network topology begets privileged neurons and rank-order representation
Christoph Bauermeister’-2*, Hanna Keren®#, and Jochen Braun'-?

"Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany

2Center for Behavioral Brain Sciences, Magdeburg, Germany

3Network Biology Research Laboratory, Technion - Israel Institute of Technology, Haifa, Israel
“Department of Physiology, Technion - Israel Institute of Technology, Haifa, Israel

X047 Finer parcellation reveals intricate correlational structure of resting-state fMRI signals
Joao Vicente Dornas*, Jochen Braun

Institute of Biology, Otto von Guericke University, Magdeburg, Saxony-Anhalt, Germany

Modelling human choices: MADeM and decision-making
Eirini Mavritsaki'?*, Silvio Aldrovandi', and Emma Bridger'

"Department of Psychology, Birmingham City University, Birmingham, UK
2School of Psychology, University of Birmingham, Birmingham, UK

The interplay between synaptic plasticity and firing rate adaptation sharpens response dynam-
ics with visual learning

Sukbin Lim'*, Nicolas Brunel?3

"Neural and Cognitive Sciences, NYU Shanghai, Shanghai, China
2Department of Neurobiology, University of Chicago, Chicago, lllinois, USA
3Department of Statistics, University of Chicago, Chicago, Illinois, USA

Adaptation and inhibition control the pathologic synchronization in the model of a focal epileptic
seizure.

Anatoly Buchin'2*, Clifford Charles Kerr®, Anton Chizhov*®, Gilles Huberfeld®’, Richard Miles®, and
Boris Gutkin®1°

" Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA

2Allen Institute for Brain Science, Seattle, WA, USA

3SUNY Downstate Medical Center, New York City, NY, USA

“Computational Physics Laboratory, loffe Institute, St Petersburg, Russian Federation

9Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russian Federation

b pitié-Salpétriere Hospital, University Pierre and Marie Curie, Paris, France

”Inserm U1129 Infantile Epilepsies and Brain Plasticity, Paris Descartes University, Paris, France

8Cortex and Epilepsy Group, Brain and Spine Institute, Paris, France

°Department of Cognitive Neuroscience, Group for Neural Theory, Ecole Normale Supérieure, Paris, France
"0Center for Cognition and Decision Making, NRU Higher School of Economics, Moscow, Russian Federation

Efficient and Effective Neural Activity Shaping for a Retinal Implant
Martin Spencer'*, Hamish Meffin'2, Tatiana Kameneva', David B Grayden', and Anthony N Burkitt'

"Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
2NVRI, Department of Optometry & Vision Sciences, University of Melbourne, Melbourne, Australia
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P25

P26

P27

P28

Application of control theory to neural learning in the brain
Catherine Davey'*, David B Grayden'-2, and Anthony N Burkitt'

" Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
2Centre for Neural Engineering, University of Melbourne, Victoria, Australia

Modeling dynamic oscillations: A method of inferring neural behavior through mean field net-
work models

Tao Liangyu', Vineet Tiruvadi’-?, Rehman Ali*, Helen Mayberg?, and Rob Butera’

" Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
2Department of Biomedical Engineering, Emory University, Atlanta, GA, USA

3Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
“Department of Electrical Engineering, Stanford University, Stanford, CA, USA

Synaptic strengths dominate phasing of motor neurons by a central pattern generator
Cengiz Gunay'-?*, Anca Doloc-Mihu', Damon G Lamb'3, and Ronald L Calabrese'

"Department of Biology, Emory University, Atlanta, GA, USA
2School of Science and Technology, Gerogia Gwinnett College, Lawrenceville, GA, USA
3Department of Neurology, Univ. Florida, Gainesville, FL, USA

PumpHCO-db: A database of half-center oscillator computational models for analyzing the influ-
ence of Na+/K+ pump on the bursting activity

Anca Doloc-Mihu*, Ronald Calabrese

Department of Biology, Emory University, Atlanta, GA, USA

Encoding of memories: effective connectivity on the hippocampus and the role of inhibition in
the information flow.

Victor J. Lopez-Madrona'*, Fernanda S. Matias?, Ernesto Pereda®, Claudio Mirasso*, and Santiago
Canals'

'Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas, Universidad Miguel Hernandez, Sant
Joan d’Alacant, Spain

2Instituto de Fisica, Universidade Federal de Alagoas, Maceié, Alagoas, Brazil

3Departamento de Ingenieria Industrial, Escuela Superior de Ingenieria y Tecnologia, Universidad de La Laguna
Avda. Astrofisico Fco. Sanchez, s/n, La Laguna, Tenerife, Spain

“Instituto de Fisica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de les llles Balears,
Palma de Mallorca, Spain

Extended generalized leaky integrate and fire neuron for cerebellum modeling
Alice Geminiani'*, Alessandra Pedrocchi', Egidio Dangelo?, and Claudia Casellato’

"NEARLab, Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

Saccade Velocity Driven Oscillatory Networkmodel of Grid cells
Ankur Chauhan*, Karthik Soman, and Srinivasa Chakravarthy

Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
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Programmed cell death in substantia nigra due to subthalamic nucleus-mediated excitotoxicity:
a computational model of Parkinsonian neurodegeneration

Vignayanandam Muddapu*, Srinivasa Chakravarthy

Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, IIT-Madras, Chennai, TN, India

A novel approach for determining how many distinct types of neurons are in the Drosophila
brain by sequencing neural structure

Chaochun Chuang*, Nan-Yow Chen

National center for high-performance computing, Taiwan

Generating sequences in recurrent neural networks for storing and retrieving episodic memories
Mehdi Bayati'?*, Jan Melchior', Laurenz Wiskott', and Sen Cheng'?

! Institut fiir Neuroinformatik, Ruhr-Universitdt Bochum, Bochum, Germany
2Mercator Research Group “Structure of Memory’, Ruhr-University Bochum, Bochum, Germany

Modeling replay and theta sequences in a 2-d recurrent neural network with plastic synapses
Amir Hossein Azizi'*, Kamran Diba?, and Sen Cheng'

"Institut fiir Neuroinformatik, Ruhr University Bochum (RUB), Bochum, Germany
2Psychology faculty, university of Wisconsin-Milwaukee, Wi, USA

Biophysically detailed model of cortical activity in response to moving gratings
Elena Smirnova'2*, Elena Yakimova®, and Anton Chizhov'2

'loffe Institute, St. Petersburg, Russia
2Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, St. Petersburg, Russia
3Paviov Institute of Physiology, St. Petersburg, Russia

NeuriteSLIM — Shrink the Neuro Fibers for Visualization the Connectome
Nan-Yow Chen'*, Chi-Tin Shih?, and Chaochun Chuang’

"High Performance Computing Division, National Center for High-Performance Computing, Taiwan
2Department of Applied Physics, Tunghai University, Taiwan

Identification of models of sensory neural circuits consisting of a nonlinear filter in series with
a leaky integrate-and-fire neuron

Dorian Florescu, Daniel Coca*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK

Modelling fluctuations in resting-state functional connectivity in epilepsy
Julie Courtiol*, Spase Petkoski, and Viktor K Jirsa

Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systemes, Marseille, France

Exact solutions to a Wilson-Cowan network of excitatory and inhibitory neurons whose dynam-
ics is triggered by one single spike

Roberto Covolan*

Department of Neurology, State University of Campinas, Campinas, SP, Brazil
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Encoding variable cortical states with short-term spike patterns
Bartosz Telenczuk'*, Richard Kempter?, Gabriel Curio®, and Alain Destexhe'

"Unité de Neurosciences, Information et Complexité, CNRS, 91198 Gif-sur-Yvette, France; European Institute for
Theoretical Neuroscience, CNRS, Paris, France

2Institute for Theoretical Biology, Humboldt-Universitat zu Berlin, Berlin, Germany

3Dept. of Neurology, Universitdtsmedizin Charité, Berlin, Germany

Cat Paw-shaking as a Transient Response to Sensory Input to Locomotion CPG
Jessica Parker'*, Alexander Klishko?, Boris Prilutsky?, and Gennady Cymbalyuk!

"Neuroscience Institute, Georgia State University, Atlanta, GA, USA
2School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Population Coding with Two-Dimensional Feature Maps in the Retina
Felix Franke'*, Andreas Hierlemann', and Rava Azeredo Da Silvera®3

" Department of Biosystems Science and Engineering, ETH Ziirich, Basel, Switzerland
2Ecole Normale Supérieure, Paris, France
3Centre National de la Recherche Scientifique, Paris, France

A detailed computational reconstruction of the cerebellum granular layer network predicts large
scale spatiotemporal dynamics of neuronal activity

Stefano Casali', Stefano Masoli'*, Martina Francesca Rizza'2, and Egidio Dangelo'-?

" Department of Brain and Behavioral Sciences, University of Pavia, Pavia, ltaly

2Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy

3Dipartimento di Informatica, Sistemistica e Comunicazione, Universita degli Studi di Milano-Bicocca, Viale Sarca,
Italy

A Biophysically Detailed Cerebellar Stellate Neuron Model Predicts Local Synaptic Interactions
Martina Francesca Rizza'?*, Stefano Masoli', and Egidio Dangelo’:?

" Department of Brain and Behavioral Sciences, University of Pavia, Pavia, ltaly
2Dipartimento di Informatica, Sistemistica e Comunicazione, Universita degli Studi di Milano-Bicocca, Milan, Italy
3Brain Connectivity Center, Istituto Neurologico IRCCS C. Mondino, Pavia, Italy

Neuromodulation of Subgenual Cingulate Activity Localizable from EEG
Yinming Sun'-2*, Willy Wong'3, Faranak Farzan?, Daniel Blumberger®#, and Zafiris Daskalakis*

!Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M553G9, Canada
2Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada

3Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S3G4, Canada
“Dept. of Psychiatry, University of Toronto, Toronto, ON, M553G4, Canada

Phase dynamics in a GO/NOGO finger tapping task

Svitlana Popovych'2*, Shivakumar Viswanathan?2, Nils Rosjat’-?, Christian Grefkes?3, Gereon Fink??2,
and Silvia Daun'?

"Heisenberg Research Group of Computational Neuroscience - Modeling Neural Network Function, Department of
Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany

2Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Ger-
many

3Department of Neurology, University Clinic Cologne, Cologne, Germany
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Mechanisms of focal seizure generation in a realistic small-network model with ionic dynamics
Damiano Gentiletti'*, Piotr Suffczynski', Vadym Gnatkovski?, and Marco de Curtis?

"Department of Experimental Physics, University of Warsaw, Warsaw, Poland
2|stituto Neurologico Carlo Besta, Milan, Italy

Pre-allocation of working memory modulates memory performance
Hyeonsu Lee'*, Woochul Choi'?, and Se-Bum Paik’+2

" Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
Republic of Korea

Temporal dynamics of bistable perception reveals individual time window for perceptual deci-
sion making

Woochul Choi*, Se-Bum Paik

Regularly structured retinal mosaics can induce structural correlation between orientation and
spatial frequency maps in V1

Jaeson Jang'*, Se-Bum Paik'?

"Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic
of Korea

2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
Republic of Korea

Distinct role of synaptic and nonsynaptic plasticity in memory ensemble formation, allocation,
and linkage

Youngijin Park'*, Se-Bum Paik'2

" Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic
of Korea

2Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon,
Republic of Korea

Frequency- and Location-Dependence of Auditory Influence on Human Visual Perception
Jun Ho Song*, Se-Bum Paik

Developmental model for ocular dominance column seeded from retinal
Min Song'2?*, Se-Bum Paik'2

" Department of Bio and Brain Engineering
2Program of Brain and Cognitive Engineering, KAIST, Daejeon, Republic of Korea

Reliability of effective connectivity from fMRI resting-state data: discrimination between individ-
uals

Vicente Pallares'*, Matthieu Gilson', Simone Kuhn2, Andrea Insabato’, and Gustavo Deco'

"Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
2Max Plank Institute for Human Development, Berlin, Germany
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Temporal dynamics of resting state networks on a whole-brain level
Katharina Glomb'*, Adrian Ponce-Alvarez', Matthieu Gilson', Petra Ritter?, and Gustavo Deco'3

! Center for Brain and Cognition, Dept. of Technology and Information, Universitat Pompeu Fabra, Barcelona, Spain
2Dept. of Neurology, Charité - University Medicine, Charitéplatz, Berlin, Germany
3Institucié Catalana de la Recerca i Estudis Avancats, Universitat Barcelona, Barcelona, Spain

Non-parametric estimation of network connectivity using MVAR processes in multiunit activity
Matthieu Gilson'*, Adria Tauste Campo'-2, Alexander Thiele®, and Gustavo Deco'#

"Computational Neuroscience Group, Dept. de Tecnologies de la Informacid i les Comunicacions, Universitat Pom-
peu Fabra, Barcelona, Spain

2Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
3Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK

“Institucié Catalana de Recerca i Estudis Avancats, Barcelona, Spain

Dependence of Absence Seizure Dynamics on Physiological Parameters
Farah Deeba'?*, Paula Sanz-Leon'2, and Pa Robinson'?

School of Physics, University of Sydney, Sydney, Australia
2Center for Integrative Brain Function, University of Sydney, Sydney, Australia

NEST-SpiNNaker comparison of large-scale network simulations

Sacha J van Albada'*, Andrew Rowley?, Johanna Senk', Michael Hopkins?, Maximilian Schmidt'-3,
Alan Stokes?, David Lester?, Steve Furber?, and Markus Diesmann'45

TInstitute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jiilich Research
Centre and JARA BRAIN Institute |, Jilich, Germany

2School of Computer Science, University of Manchester, Manchester, UK

3L aboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Japan

“Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University,
Aachen, Germany

5Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Temporal processing in the cerebellar cortex enabled by dynamical synapses
Alessandro Barri'*, Martin Wiechert?, and David Digregorio’

"Unite d’Imagerie Dynamique du Neurone, Institut Pasteur, Paris, France
2Department of Physiology, Universitat Bern, Switzerland

Emergence of perceptual invariances in biological sensory processing
Alexander G Dimitrov*

Department of Mathematics and Statistics, Washington State University Vancouver, Vancouver, WA, USA

A non-linear stochastic strategy to estimate synaptic conductances under the presence of sub-
threshold ionic currents.

Catalina Vich Llompart'*, Rune W. Berg?, Antoni Guillamon®, and Susanne Ditlevsen*

"Dept. of Mathematics and Computer Science, Universitat de les llles Balears, Palma, Spain
2Dept. of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
3Dept. of Applied Mathematics |, EPSEB, Universitat Politécnica de Catalunya, Barcelona, Spain
“Dept. of Mathematical Science, University of Copenhagen, Copenhagen, Denmark

99



P60

P61

P62

P63

P64

P65

P66

100

Involvement of randomness in reinforcement learning
Romain Cazé*, Benoit Girard, and Stéphane Doncieux

ISIR, Université Pierre et Marie Curie, Paris, France

Modelling the impact of dendritic spine geometry on electrical and calcic signalling with the
Finite Element Method

Nicolas Doyon*, Frank Boahen

Department of Mathematics and Statistics, Laval University, Quebec, Canada

Resilience in dynamical neural networks with synaptic adaptation
Patrick Desrosiers'?*, Edward Laurence?, Nicolas Doyon'?, and Louis J. Dubé?

"Centre de recherche de I'lnstitut universitaire en santé mentale de Québec, Québec, Québec, Canada
2Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec, Canada
3Département de mathématiques et de statistique, Université Laval, Québec, Québec, Canada

Cell assemblies: a computational challenge
Eleonora Russo*, Daniel Durstewitz

Department of Theoretical Neuroscience, ZI - Central Institute for Mental Health, Mannheim, Germany

Reconstructing neural dynamics from experimental data using radial basis function recurrent
neural networks

Dominik Schmidt*, Daniel Durstewitz

Department of Theoretical Neuroscience, Bernstein Center for Computational Neuroscience, Central Institute of
Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany

Layer V pyramidal cells as mediators of delta oscillations: Insights from biophysically detailed
modeling and connections with schizophrenia genetics.

Tuomo Méki-Marttunen'*, Florian Krull', Francesco Bettella', Christoph Metzner?, Anna Devor®#, Srd-
jan Djurovic®, Anders M. Dale®*, Ole A Andreassen', and Gaute T. Einevoll®”

"NORMENT, Institute of Clinical Medicine, University of Oslo, Norway

2Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, UK
3Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
“Department of Radiology, University of California San Diego, La Jolla, CA, USA

SDepartment of Medical Genetics, Oslo University Hospital, Oslo, Norway

®Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway
’Department of Physics, University of Oslo, Norway

Biophysical modeling of single-neuron contributions to ECoG and EEG signals

Solveig Nzess'?, Torbjern V Naess®, Geir Halnes®, Eric Halgren*, Anders M. Dale*, and Gaute T.
Einevoll35*

" Department of Informatics, University of Oslo, Oslo, Norway

2Simula-UiO-UCSD Research and PhD (SUURPA) training program

3Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway
“Department of Neuroscience and Radiology, School of Medicine, UC San Diego, CA, USA
°Department of Physics, University of Oslo, Oslo, Norway
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Extracellular diffusion can introduce errors in current source density estimates

Geir Halnes', Tuomo Maki-Marttunen?, Klas H Pettersen®*, Ole A Andreassen?, and Gaute T.
Einevoll'-®

"Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway

2NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

3Letten Centre and Glialab, Dept. of Molecular Medicine, Inst. of Basic Medical Sciences, University of Oslo, Oslo,
Norway

“Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway

>Department of Physics, University of Oslo, Oslo, Norway

Estimation of metabolic oxygen consumption from optical measurements in cortex
Marte Saetra’*, Anders M Dale?, Anna Devor?, and Gaute T. Einevoll'3

" Department of Physics, University of Oslo, Oslo, Norway
2Department of Neurosciences, UC San Diego, La Jolla, CA, USA
3Faculty of Science and Technology, Norwegian University of Life Sciences, As, Norway

Computing Brain Signals: Concurrent simulation of network activity, extracellular electric poten-
tials and magnetic fields.

Espen Hagen'*, Solveig Naess?, Torbjern V Neess®, and Gaute T. Einevoll'-3

" Department of Physics, University of Oslo, Oslo, Norway
2Department of Informatics, University of Oslo, Oslo, Norway
3Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway

Integration of orientation and spatial frequency in a model of visual cortex
Alina Schiffer'*, Axel Grzymisch', Malte Persike?, and Udo A Ernst’

" Computational Neuroscience Lab, Institute for Theoretical Physics, Univ. of Bremen, Germany
2Department of Psychology, Methods Section, Johannes Gutenberg University Mainz, Germany

Performance-optimization guided distribution of attentional resources
Daniel Harnack, Udo A Ernst*

Computational Neuroscience Lab, Institute for Theoretical Physics, University Bremen, Germany

Feature integration with critical dynamics in cortical subnetworks
Nergis Tomen*, Udo A Ernst

Computational Neuroscience Lab, Institute for Theoretical Physics, University of Bremen, Germany

Interneuronal contribution to state transition in the mouse neocortex

Stefano Zucca'?, Valentina Pasquale®*, Giuseppe Pica®*, Manuel Molano-Mazon?#, Michela Chiap-
palone®, Stefano Panzeri>#, and Tommaso Fellin'2

" Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto
Italiano di Tecnologia, Genova, Italy

2Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, ltaly

3Department of Neuroscience and Brain Technologies, Istituto ltaliano di Tecnologia, Genova, Italy

“Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto ltaliano di Tec-
nologia, Rovereto, Italy
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Embodiment, connectivity, and critical states in neural systems
Kelvin Oie'*, David Boothe', Joshua Crone', Alfred Yu', and Melvin Felton?

"U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA
2U.S. Army Research Laboratory, Adelphi, MD, USA

A computational model of temporal processing in the human auditory cortex
Isma Zulfigar'*, Michelle Moerel'-2, Peter de Weerd'-?, and Elia Formisano'-2

"Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
2Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands

The dependence of simulated local field potential (LFP) frequency content on local and long
range connectivity

David Boothe', Alfred Yu', Joshua Crone’, Melvin Felton', Kelvin Oie', and Piotr J Franaszczuk'-2*

"US Army Research Laboratory, Aberdeen, Maryland, USA
2Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Pre-whitening as a means to improve dimensionality reduction and simplify clustering in spike-
sorters for multi-electrode recordings

Roland Diggelmann’-?*, Michele Fiscella'2, Andreas Hierlemann', and Felix Franke’

"Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
2Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

An integrative model explaining many functions of corticothalamic feedback
Domenico Guarino'*, Jan Antolik'?, Andrew P Davison', and Yves Fregnac’

TUNIC, CNRS-FRE3693, Gif-sur-Yvette, France
2Institut de la Vision, Paris, France

State-Dependent Control of Oscillatory Brain Dynamics
Benjamin Xavier Etienne', Flavio Frohlich?, and Jérémie Lefebvre’*

"Krembil Research Institute, University Health Network, Toronto, Ontario, Canada

2Department of Psychiatry and Cell Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
USA

3Department of Mathematics, University of Toronto, Toronto, Ontario, Canada

Switch of preference as a sighature of heterogeneous excitability of neurons in the primate
prefrontal cortex

Encarni Marcos'*, Maurizio Mattia2, and Aldo Genovesio'

" Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
2|stituto Superiore di Sanita, Rome, Italy

Modeling of the perceptual dynamics of the perception of body motion
Leonid Fedorov'-?*, Tjeerd Dijkstra', Louisa Sting'3, Howard Hock*, and Martin Giese'?

"Section for Comput. Sensomotorics, Dept. Cognitive Neurology, CIN&HIH, Univ. of Tiibingen, Germany
2GTC, International Max Planck Research School, University of Tiibingen, Tiibingen, Germany
3Department of Cognitive Science, University of Ttibingen, Tiibingen, Germany

“Center for Complex Systems and the Brain Sciences, Department of Psychology, Florida Atlantic University
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Modelling the effects of propofol on neuronal synchronization in network of interneurons
Laure Buhry'-2, Clément Langlet?, and Francesco Giovannini'-2*

"Neurosys Team, LORIA, CNRS, INRIA CR Nancy Grand Est, Villers-lés-Nancy, France
2Université de Lorraine, Vandoeuvre-lés-Nancy, France

The dynamical response properties of in silico neurons from the Blue Brain Project digitally
reconstructed neocortical microcircuitry

Christophe Verbist'*, Stefano Salvade'?, and Michele Giugliano'

"TNB, Department of Biomedical Sciences, University of Antwerp, Belgium
2DIBRIS, University of Genova, Genova, ltaly

Self-Organized Balanced Spiking Neural Networks To Encode Natural Stimuli
James Henderson'2*, Pulin Gong'+?

"School of Physics, The University of Sydney, Sydney, NSW, Australia
2Centre for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia

Transiently attracting states in recurrent neural networks
Hendrik Wernecke*, Bulcsu Sandor, and Claudius Gros

Institute for Theoretical Physics, Goethe University, Frankfurt am Main, Germany

Characterization of resting state dynamics in monkey motor cortex

Nicole Voges'*, Paulina Dabrovska', Johanna Senk', Espen Hagen?, Alexa Riehle'2, Thomas
Brochier®, and Sonja Griin'#

' Institute of Neuroscience and Medicine (INM-6) & Institute for Advanced Simulations (IAS-6) & JARA Brain Institute
I, Juelich Research Centre, Juelich, Germany

2Department of Physics, University of Oslo, Oslo, Norway

3Institut de Neurosciences de la Timone (INT), CNRS - Aix Marseille Universitée, Marseille, France

“Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Sharp wave ripples as propagating patterns emerging from spatially extended neural circuits
Yifan Gu, Pulin Gong*

School of Physics and Australian Research Council Centre of Excellence for Integrative Brain Function, University
of Sydney, NSW, Australia

Macroscopic Phase-Resetting Curve of Spiking Neural Networks: Theory and Application
Gregory Dumont*, Boris Gutkin

Group for Neural Theory, Ecole Normale Supérieure, Paris, France

Semi-numerical method for computationally effective analysis of working memory models
Nikita Novikov'*, Boris Gutkin':2

"Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow,
Russia
2Department of Cognitive Studies, Ecole Normale Superieure PSL* Research University, Paris, France

103



P90

P91

P92

P93

P94

P95

104

Workflow for model building, parameter estimation and uncertainty analysis applied to calcium-
and G-protein dependent subcellular signaling underlying synaptic plasticity

Parul Tewatia'*, Olivia Eriksson'2, Andrei Kramer?, Joao Santos®, Alexandra Jauhiainen*, Kim Avrama
Blackwell®, and Jeanette Hallgren Kotaleski'-®

"KTH Royal Institute of Technology, School of Computer Science and Communication, Sweden

2Stockholm University, Department of Numerical Analysis and Computer Science, Sweden

3Karolinska Institute, Department of Neuroscience, Sweden

4Ear/y Clinical Biometrics, AstraZeneca AB R&D, Gothenburg, Sweden

>Computational and Experimental Neuroplasticity Laboratory, Krasnow Institute for Advanced Study, George Mason
University, USA

The role of striatal feedforward inhibition in propagation of cortical oscillations
Jovana Belic'?3*, Arvind Kumar?, and Jeanette Hallgren Kotaleski'2#

"Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden

2Department of Computational Science and Technology, Royal Institute of Technology, Stockholm, Sweden
3Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany

“Department of Neuroscience, Karolinska Institute, Solna, Sweden

Electrical propagation on Cortical Connectome and Communicability
Masanori Shimono'3*, Naomichi Hatano?

"Osaka University, Toyonaka, Osaka, Japan
2University of Tokyo, Bunkyo, Tokyo, Japan
3Riken Brain Science Institute, Saitama, Japan

A cortical model for learning complex temporal structure in sensory streams
Subutai Ahmad*, Yuwei Cui, and Jeff Hawkins

Numenta, Redwood City, CA, USA

Conditions for traveling waves in spiking neural networks obtained from a rigorous mapping to
a neural-field model

Johanna Senk'*, Karolina Korvasova', Jannis Schuecker!, Espen Hagen'2, Tom Tetzlaff', Markus
Diesmann-®#, and Moritz Helias'*

'Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Forschungszentrum Jdlich, Jilich, Germany

2Department of Physics, University of Oslo, Oslo, Norway

3Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University,
Aachen, Germany

“Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Temporal structure of synchrony and Unitary Events in periodically-driven balanced networks
Tobias Kuehn'*, Michael Denker', Piergianluca Mana', Sonja Griin'2, and Moritz Helias'>

'Institute of Neuroscience and Medicine (INM-6) and Institute of Advanced Simulation (IAS-6) and JARA Brain
Institute I, Jilich Research Centre, Jiilich, Germany

2Theoretical Systems Neurobiology, Faculty |, RWTH Aachen University, Aachen, Germany

3Department of Physics, Faculty I, RWTH Aachen University, Aachen, Germany
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Distributed correlations in motor cortex suggest virtually unstable linearized dynamics
David Dahmen'*, Markus Diesmann'-?2, and Moritz Helias' 3

!Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, Jilich, Germany

2Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University,
Aachen, Germany

3Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Transition to chaos and short-term memory in driven random neural networks
Jannis Schuecker'*, Sven Goedeke', and Moritz Helias'?

!Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, Jilich, Germany
2Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Dynamics of cell assemblies in binary neuronal networks
Christian Keup-?*, Tobias Kuehn'2, and Moritz Helias'?

!Institute of Neuroscience and Medicine (INM-6) and Institute of Advanced Simulation (IAS-6) and JARA, Jilich
Research Centre, Jilich, Germany
2Department of Physics, Faculty I, RWTH Aachen University, Aachen, Germany

A dynamic mean-field approach for the largest Lyapunov exponent of random neural networks
Sven Goedeke'*, Jannis Schuecker!, and Moritz Helias'?

!Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute I, Jilich Research Centre, Jilich, Germany
2Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

Microdraw: Online platform for the collaborative editing of cytoarchitectonic brain atlases
Katja Heuer', Rembrandt Bakker?3*, Paul Tiesinga®, and Roberto Toro*

"Dept. of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
2Neuroinformatics dept., Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Ni-
jmegen, The Netherlands

3Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN
Institute |, Jiilich Research Centre, Jiilich, Germany

“ Applied and Theoretical neuroanatomy group, Institut Pasteur, Paris, France

Single-compartment models of retinal ganglion cells with different morphologies

Wei Qin', Alex Hadjinicolaou', Hamish Meffin>2, David B Grayden', Anthony N Burkitt', Michael Ibbot-
son®3, and Tatiana Kameneva'*

 Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
2National Vision Research Institute, Australian College of Optometry, VIC, Australia
3Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
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Credibility, Replicability, Reproducibility in Simulation for research and clinical application

William W Lytton'*, Lealem Mulugeta?, Andrew Drach?, Jerry Myers*, Marc Horner®, Rajanikanth Vadi-
gepalli®, Tina Morrison”, Marlei Walton®, Martin Steele®, and Anthony Hunt°

"Dept. Of Physiology, SUNY Downstate Medical Center, Brooklyn, NY, USA

2InSilico Labs LLC, Houston, TX, USA

3Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
4John H Glenn Research Center, NASA, Houston, TX, USA

°ANSYS, Inc. Canonsburg, PA, USA

6Thomas Jefferson University, Philadelphia, PA, USA

’U.S. Food and Drug Administration, Washington DC, USA

SKBRWyle, El Segundo, CA, USA

9Kennedy Space Center, NASA, Houston, TX, USA

"’Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA

Computational social interaction in reciprocity and empathic behavior as behavioral economics
and risk tasking behavior

Nicoladie Tam*

Department of Biological Sciences, University of North Texas, Denton, TX, USA

On the need for standardized real-time software technology in closed-loop neuroscience
Rodrigo Amaducci, Carlos Muniz, Manuel Reyes-Sanchez, Francisco B Rodriguez, and Pablo Varona*

Grupo de Neurocomputacion Bioldgica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, Spain
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Discovering Connectivity Changes with rescaled Energy-Based Models
Joseph Cronin*, Matthias Hennig

Institute for Adaptive and Neural Computation, School of Informatics, The University of Edinburgh, United Kingdom

Fitting and analysis pipeline to build data-driven models of tonic and burst firing in thalamic
neurons

Elisabetta lavarone'*, Christian O Reilly’, Jane Yi?, Ying Shi?, Bas-Jan Zandt', Werner van Geit®,
Christian Réssert®, Henry Markram?2, and Sean Hill'

"Laboratory for the Neural Basis of Brain States, Blue Brain Project, EPFL, Geneva, Switzerland
2Laboratory of Neural Microcircuity, Brain Mind Institute, EPFL, Lausanne, Switzerland
3Blue Brain Project, EPFL, Geneva, Switzerland

A data-driven pipeline for digital reconstruction of somatosensory thalamic microcircuitry

Christian O Reilly'*, Elisabetta lavarone', Jane Yi2, Ying Shi?, Rodrigo Perin?, Huanxiang Lu', Bas-Jan
Zandt', Henry Markram?, and Sean Hill'

’Laboratory for the Neural Basis of Brain States, Blue Brain Project, EPFL, Geneva, Switzerland
2Laboratory of Neural Microcircuity, Brain Mind Institute, EPFL, Lausanne, Switzerland

Sensitivity analysis of somatic and dendritic features, parameters, and fitting error of biophysi-
cally detailed neuron models

Bas-Jan Zandt'*, Elisabetta lavarone', Alexander Bryson?, Werner van Geit', Christian O Reilly', Chris-
tian Réssert!, and Sean Hill'

Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
2Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne, Vic, Australia

Music gone crazy: neural oscillators to the rescue?
Michal Hadrava'23*, Jaroslav Hlinka%3

"Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague,
Czech Republic

2Department of Nonlinear Dynamics and Complex Systems, Institute of Computer Science, The Czech Academy
of Sciences, Prague, Czech Republic

3National Institute of Mental Health, Klecany, Czech Republic

Bistability generates highly irregular spike trains with weakly fluctuated inputs
Ryosuke Hosaka*

Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan

Big bang bifurcations structure the parameter space of a two-cell inhibitory network with synap-
tic depression.

Mark Olenik'*, Conor Houghton?

"School of Biological Sciences, University of Bristol, Bristol, UK
2Department of Computer Science, University of Bristol, Bristol, UK
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Morphology and balance influences Dendritic mosaic formation.
Nicolangelo lannella’*, Thomas Launey?

"School of Mathematical Sciences, University of Nottingham, Nottingham, UK
2L ab for Synaptic Molecules of Memory Persistence, RIKEN, Brain Science Institute, Saitama, Japan

Comparison between extracellular and intracellular stimulation
Tatiana Kameneva'*, Rebecca Kotsakidis2, Hamish Meffin®3, and Michael Ibbotson??

" Department of Biomedical Engineering, University of Melbourne, Victoria, Australia
2National Vision Research Institute, Australian College of Optometry, VIC, Australia
3Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia

X106 Bifurcations in a temperature-dependent neural mass model reveal heterogeneous effect
of focal cooling on epileptic discharges

Jaymar Soriano'?*, Takatomi Kubo', Takao Inoue®, Hiroyuki Kida®, Toshitaka Yamakwa*, Michiyasu
Suzuki®, and Kazushi Ikeda'

"Nara Institute of Science and Technology, Nara, Japan
2University of the Philippines - Diliman, Quezon City, Philippines
3Yamaguchi University, Ube, Japan

“Kumamoto University, Kumamoto, Japan

Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway
in Awake Mice

Samira Abbasi?, Amber Hudson', Detlef Heck®, and Dieter Jaeger'*

"Department Biology, Emory University, Atlanta, GA, USA
2Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
3Department of Anatomy and Neurobiology, UT Health Science Center, Memphis, TN, USA

A method to generate realistic artificial spike trains as inputs to biophysical neuron models:
cerebellar mossy fibers as a case study

Joel Lee'*, Samira Abbasi?, Amber Hudson', Detlef H Heck®, and Dieter Jaeger'

" Department of Biology, Emory University, Atlanta, GA, USA
2Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
3Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA

Serotonergic fiber densities may emerge from random walks
Skirmantas Janusonis*

Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA

A taxonomy of seizures based on dynamics
Maria Luisa Saggio'*, Andreas Spiegler!, William Stacey?, Christophe Bernard', and Viktor Jirsa'

TINSERM UMR 1106 Institut de Neurosciences des Systemes - Aix-Marseille Université, Marseille, France
2Department of Neurology, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA

Computational model for diffusion-induced bursting of biophysically realistic HH-type neuron:
mathematical characterization

Davide Lillo*, Christophe Bernard, and Viktor Jirsa

Institut de Neurosciences des Systemes, Aix Marseille Univ, Marseille, France
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Phase-lags in large scale brain synchronization
Spase Petkoski*, Viktor Jirsa

INSERM UMR 1106 Institut de Neurosciences des Systemes - Aix-Marseille Universite, Marseille, France

Network dynamics after focal stimulation in a connectome-based network model of the mouse
brain

Andreas Spiegler*, Viktor Jirsa

Institut de la Santé et de la Recherche Médical, Institut de Neurosciences des Systéemes UMR_S 1106, Aix Mar-
seille Université, 13005 Marseille, France

What is the feasibility of estimating axonal conduction delays from micro-structural MRI?
Drakesmith Mark'2*, Derek Jones'-

! Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
2Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK

Analysing the impact of sodium channels in Alzheimer’s disease using a computational model
Seyed Ali Sadegh Zadeh*, Chandra Kambhampati

Department of Computer Science, University of Hull, Hull, UK

Models of brain design: is physics more important than evolutionary optimization?
Jan Karbowski*

University of Warsaw, Warsaw, Poland

Perceptual Attractors and Neural Confusions in Phoneme Manifolds
Zeynep Gokcen Kaya'*, Yair Lakretz?, and Alessandro Treves'3

" Cognitive Neuroscience Sector, SISSA, Trieste, 34136, ITALY
ZSago/ School of Neuroscience, Tel Aviv University, Tel Aviv, ISRAEL
3Kavli Institute, Norwegian University of Science and Technology, Trondheim, NORWAY

Network analysis of task-oriented neuroimaging data via multivariate information-theoretic mea-
sures

Lily W Li", Joseph Lizier?, Paula Sanz-Leon'-3, and Cliff C Kerr'-3*

School of Physics, University of Sydney, NSW, Australia
2School of Civil Engineering, University of Sydney, NSW, Australia
3Centre for Integrative Brain Function, University of Sydney, NSW, Australia

Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and
coincidence-detection

Timothee Masquelier'*, Saeed Reza Kheradpisheh?

"CERCO UMR 5549, CNRS — Université de Toulouse, France
2Dept. of Computer Sc., School of Mathematics, Statistics, and Computer Science, Univ. of Tehran, Tehran, Iran

Muscle force potentiation induced by active dendrites of spinal motoneuron during locomotor-
like movement

Hojeong Kim*

Convergence Research Institute, DGIST, Daegu, Korea
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X180 Perceptual Mechanics of the Brian and the Free Energy Principle
Chang Sub Kim*

Department of Physics, Chonnam National University, Gwangju, Republic of Korea

Influence of handedness on the response inhibition in Stroop task: ERP study

Julia Marakshina'?, Alexander Vartanov', Anastasia Neklyudova'*, Stanislav Kozlovskiy', and Andrey
Kiselnikov'

"L omonosov Moscow State University, Moscow, Russia
2Psychological Institute of Russian Academy of Education, Moscow, Russia

Contribution of short-term plasticity of the bipolar-ganglion synapse to the activity both in the
normal and the degenerating rd1 retina

Kanako Taniguchi’, Katsunori Kitano®*

" Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan
2Department of Human and Computer Intelligence, Ritsumeikan University, Kusatsu, Japan

Differential connectomics of the rat thalamus

Oliver Schmitt*, Felix Lessmann, Sebastian Schwanke, Peter Eipert, Jennifer Meinhardt, Julia Beier, Ka-
nar Kadir, Adrian Karnitzki, Linda Sellner, Ann-Christin Kliinker, Lena Kuch, Frauke RuB3, Jérg Jenssen,
and Andreas Wree

Department of Anatomy, University of Rostock, Rostock, Germany

X351 Nonuniform neural field modeling of nonlinear dynamics spreading
Sanz-Leon Paula’?*, Stuart Knock'-?

"School of Physics, University of Sydney, New South Wales, Australia
2Center for Integrative Brain Function, University of Sydney, New South Wales, Australia

Excitatory-to-inhibitory plasticity for sequence learning
Shih-Cheng Chien*, Burkhard Maess, and Thomas R. Kndsche

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Experimental and modelling evidence for coaxial conduction in myelinated axons
Charles Cohen'2*, Marko A Popovic', Jan Klooster!, and Maarten Hp Kole'2

" Axonal Signalling Group, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sci-
ences (KNAW), Amsterdam, The Netherlands
2Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands

GIMBL-Vis: A GUI-Based Interactive Multidimensional Visualization Toolbox for Matlab
Erik Roberts'*, Nancy Kopell®

"Department of Biomedical Engineering, Boston University, Boston, MA, USA
2Department of Mathematics and Statistics, Boston University, Boston, MA, USA

Neural relativity principle
Daniel Kepple', Hamza Giaffar!, Dmitry Rinberg?, and Alexei Koulakov'*

"Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
2New York University, New York, NY, USA
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Disrupted cerebrum-cerebellum network in Schizophrenia revealed by network-based statist and
graph theory

Caroline Garcia Forlim', Leonie Klock'2, Johanna Bachle?, Laura Stoll?, Patrick GiemsaZ?, Marie
Fuchs?, Nikola Schoofs?, Christiane Montag?, Jurgen Gallinat', and Simone Kuhn'

"Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany
2Charité University Medicine and St. Hedwig-Krankenhaus, Department of Psychiatry and Psychotherapy, Berlin,
Germany

Computational behavioral analysis of acute psychosocial trauma reveals gradually increasing
stress reactions in adult mice

Ray Lee'?*, Greg Stephens?2, and Bernd Kuhn'

Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa,
Japan

2Biological Physics Theory Unit, Okinawa Institute of Science and Technolgy Graduate University (OIST), Okinawa,
Japan

3Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Relationship between population sparse coding and short-term synaptic plasticity
Luiz Tauffer'-2*, Philippe Isope®, and Arvind Kumar?

'Bernstein Center Freiburg, University of Freiburg, Germany
2School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
SCNRS, University of Strasbourg, Strasbourg, France

The contribution of topology for inclusion of feedforward network and biased synaptic strength
to the long-term memory effect in a cortical microcircuit

Katsuma Inoue*, Yoshiyuki Ohmura, Shogo Yonekura, and Yasuo Kuniyoshi

Department of Mechano-Informatics, University of Tokyo, Bunkyo, Tokyo, JPN

Propagation of spatio-temporally complex spike pattern in feedforward network of the barrel
cortex: in vitro multi-electrode array and in silico neural network model study

Hyun Jae Jang*, Jeehyun Kwag

Dept. of Brain and Cognitive Engineering, Korea University, Seoul, Korea

Computational Geometry for the Simulation of Neural Circuits with Population Density Tech-
hiques

de Kamps Marc*, Yi Ming Lai
School of Computing, University of Leeds, Leeds, UK

Neuron classification in the Stomatogastric ganglion using voltage-sensitive dye imaging and
signal processing tools

Filipa Dos Santos*, Kp Lam, and Peter Andras

School of Computing and Mathematics, Keele University, Newcastle-under-Lyme, ST5 5BG, UK

Reconstructed attractors from optogenetics experiments
Sorinel A Oprisan'*, Julia Imperatore', Jessica Helms', Tamas Tompa?, and Antonieta Lavin?

" Department of Physics and Astronomy, College of Charleston, Charleston, SC, USA
2Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
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A Simple Parameter Landscape for Optimisation of Conductance-Based Models of Neurons
Felicity H Inkpen'*, Michael Ashby', and Nathan Lepora?

"School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
2Department of Engineering Mathematics, University of Bristol, Bristol, UK

Neural Synchronization Through Electric Field Effects
Aaron Shifman'22*, John Lewis'23

"Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
2Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
30Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada

How Spines Cross-talk: Compartmental Model of Heterosynaptic Plasticity
Zhong Zhang', Yegian Feng', Christian Tetzlaff®, Tomas Kulvicius*, and Yinyun Li?*

" Department of Management Science, Beijing Normal University, Beijing, China
2School of Systems Science, Beijing Normal University, Beijing, China

3Institute of Physics-Biophysics, Georg-August-University, Goettingen, Germany
“Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark

Determination of the spike-train power spectrum statistics in modular networks with mixtures of
different excitatory and inhibitory populations

Rodrigo Pena', Davide Bernardi®®, Antonio C Roque'*, and Benjamin Lindner??

"Department of Physics, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

2Theory of Complex Systems and Neurophysics, Bernstein Center for Computational Neuroscience, Berlin, Ger-
many

3Department of Physics, Humboldt University of Berlin, Berlin, Germany

Optimal detection of single-cell stimulation in large random networks of integrate-and-fire neu-
rons

Davide Bernardi'-?*, Benjamin Lindner'?

"Bernstein Center for Computational Neuroscience - Berlin, Berlin, Germany
2Department of Physics, Humboldt University, Berlin, Germany

Self-consistent power spectra from an iterative scheme for recurrent heterogeneous networks
Sebastian Vellmer'-2*, Benjamin Lindner'?

’Theory of Complex Systems and Neurophysics, Bernstein Center for Computational Neuroscience, Berlin, Ger-
many
2Department of Physics, Humboldt Universitét zu Berlin, Berlin, Germany

Astrocyte-modulated synaptic plasticity in sensory cortex: A computational study
Ausra Saudargiene’-?, Tiina Manninen3, Riikka Havela®, and Marja-Leena Linne3*

"Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania

2Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania

3Computational Neuroscience Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering,
Tampere University of Technology, Tampere, Finland

Up and down states statistics for Gamma oscillations
Arthur Powanwe*, Andre Longtin

Department of Physics and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
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EDLUT: a real-time spiking neural network simulator for embodiment experiments
Francisco Naveros'*, Jesus Garrido, Richard Carrillo', Eduardo Ros', and Niceto Luque?3#

" Department of Computer Architecture and Technology, University of Granada (CITIC), Granada, Spain
2INSERM, U968, Paris, France

3Sorbonne Universités, UPMC University Paris 06, UMR_S 968, Institut de la Vision, Paris, France
“CNRS, UMR_7210, Paris, France

Embedded Ensemble Encoding — a hypothesis for reconciling cortical coding strategies

Joe Graham', Salvador Dura-Bernal'*, Sergio Angulo', Samuel Neymotin'2, Srdjan Antic®, and William
W Lytton-4

"Department of Physiology and Pharmacology , SUNY Downstate Medical Center, Brooklyn, NY, USA
2Department of Neuroscience, Brown University, Providence, RI, USA

3Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA
“Department of Neurology, Kings County Hospital, Brooklyn NY, USA

Multiscale modeling of ischemic stroke with the NEURON reaction-diffusion module
Adam Newton'2*, Alexandra Seidenstein®2, Robert A McDougal, and William W Lytton?#

"Department of Neuroscience, Yale University, New Haven, CT, USA
2Department Physiology & Pharmacology, SUNY Downstate, Brooklyn, NY, USA
3NYU School of Engineering, 6 MetroTech Center, Brooklyn, NY, USA

“Kings County Hospital Center, Brooklyn, NY, USA

Accelerating NEURON reaction-diffusion simulations
Robert A McDougal'*, William W Lytton?3

"Neuroscience, Yale University, New Haven, CT, USA
2Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
3Kings County Hospital, Brooklyn, NY, USA

Computation of invariant objects in the analysis of periodically forced neural oscillators
Alberto Perez-Cervera*, Gemma Huguet, and Tere M-Seara

Departament de Matematica Aplicada, Universitat Politecnica de Catalunya, Barcelona, Spain

Computational model of spatio-temporal coding in CA3 with speed-dependent theta oscillation

Caroline Haimerl!'?, David Angulo-Garcia'-*, Alessandro Torcini'®#, Rosa Cossart', and Arnaud Mal-
vache'

"Institut de Neurobiologie de la Méditerrannée (INMED), INSERM, UMR901, Aix-Marseille Univ, Marseille, France
2Center of Neural Science, New York University, NYC, NY, USA

3 Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France

“Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, Université de Cergy-Pontoise, Cergy-
Pontoise Cedex, France

The effect of progressive degradation of connectivity between brain areas on the brain network
structure

Kaoutar Skiker*, Mounir Maouene

Department of mathematics and computer science, ENSAT, Abdelmalek Essaadi’s University, Tangier, Morocco
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A network architecture for comparing the behavior of a nheurocomputational model of reward-
based learning with human

Gianmarco Ragognetti'*, Letizia Lorusso?, Andrea Viggiano?, and Angelo Marcelli’

"L aboratory of Natural Computation, Department of Information and Electrical Engineering and Applied Mathemat-
ics, University of Salerno, Italy
2Department of Medicine, University of Salerno, 84083 Lancusi (SA), ltaly

Distributed plasticity in the cerebellum: how do cerebellar cortex and nuclei plasticity cooperate
for learning?

Rosa Senatore, Antonio Parziale, and Angelo Marcelli*

Laboratory of Natural Computation, Department of Information and Electrical Engineering and Applied Mathemat-
ics, University of Salerno, Italy

Ising Model with conserved magnetization on the Human Connectome: implications on the rela-
tion structure-function in wakefulness and anesthesia

Sebastiano Stramaglia', Mario Pellicoro, Leonardo Angelini', Enrico Amico?2, Hannelore Aerts?, Je-
sus Cortes*, Steven Laureys®, and Daniele Marinazzo®*

" Dipartimento di Fisica, Universita degli Studi Aldo Moro, Bari, and INFN, Sezione di Bari, Italy
2Data Analysis Department, Ghent University, Ghent, Belgium

3Coma Science Group, University of Liége, Belgium

“Cruces Hospital and Ikerbasque Research Center, Bilbao, Spain

Multiscale Granger causality analysis by a trous wavelet transform
Sebastiano Stramaglia'*, lege Bassez?, Luca Faes®, and Daniele Marinazzo?

" Dipartimento di Fisica, Universita degli Studi Aldo Moro, Bari, and INFN, Sezione di Bari, Italy
2Data Analysis Department, Ghent University, Ghent, Belgium
3BIOtech, Dept. of Industrial Engineering, University of Trento, and IRCS-PAT FBK, Trento, ltaly

New (spectral) dynamic causal modeling scheme improves effective connectivity estimation
within resting state networks in longitudinal data

Hannes Aimgren'*, Frederik van de Steen', Adeel Razi®>®, and Daniele Marinazzo'

"Department of Data Analysis, Ghent University, Ghent, Belgium
2The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
3Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan

Effective connectivity modulations of win-and loss feedback: A dynamic causal modeling study
of the human connectome gambling task.

Frederik van de Steen'*, Ruth Krebs2, and Daniele Marinazzo'

" Department of data analysis, Ghent University, Ghent, Belgium
2Department of experimental psychology, Ghent University, Ghent, Belgium

Modeling global brain dynamics in brain tumor patients using the Virtual Brain
Hannelore Aerts*, Daniele Marinazzo

Department of Data Analysis, Ghent University, Belgium
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Representation of Neuronal Morphologies

Lida Kanari'*, Pawel Dlotko?, Martina Scolamiero®, Ran Levi*, Julian Shillcock!, Christiaan de Kock?,
Kathryn Hess®, and Henry Markram'

"Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Switzerland

2Departement of Mathematics, Swansea University, UK

SLaboratory for Topology and Neuroscience at the Brain Mind Institute, Ecole polytechnique fédérale de Lausanne,
Switzerland

“Institute of Mathematics, University of Aberdeen, UK

°Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU Universiteit
Amsterdam, The Netherlands

X034 Firing Rate Heterogeneity and Consequences for Stimulus Estimation in the Electrosen-
sory System

Cheng Ly'*, Gary Marsat?

"Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA,
USA
2Biology Department, West Virginia University, Morgantown, WV, USA

KnowledgeSpace: a community encyclopedia linking brain research concepts to data, models
and literature

Tom Gillespie?, Willy Wong?, Malin Sandstroem'*, Mathew Abrams’, Jeffrey S. Grethe?, and Maryann
Martone®

TINCF Secretariat, Karolinska Institute, Stockholm, Sweden
2Center for Research in Biological Systems, UCSD, La Jolla, CA, USA
3Neurosciences, UCSD, La Jolla, CA, USA

Evaluating the computational capacity of a cerebellum model
Robin de Gernier'*, Sergio Solinas?, Christian Réssert®, Marc Haelterman', and Serge Massar’

' Ecole polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
2Department of Biomedical Science, University of Sassari, Sassari, Italia
3Blue Brain Project, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland

Complexity of cortical connectivity promotes self-organized criticality
Valentina Pasquale'*, Vito Paolo Pastore?, Sergio Martinoia?, and Paolo Massobrio?

"Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia (IIT), Genova, ITALY
2Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Gen-
ova, ITALY

Attractor dynamics of cortical assemblies underlying brain awakening from deep anesthesia.
Cristiano Capone'-?*, Nuria Tort-Colet®, Maria V. Sanchez-Vives®#, and Maurizio Mattia'

!stituto Superiore di Sanita (ISS), Rome, ltaly

2PhD Program in Physics, Sapienza University, Rome, Italy

3Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
4Institucié Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
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Are receptive fields in visual cortex quantitatively consistent with efficient coding?

Ali Aimasi'2, Shaun Cloherty*, David B Grayden?, Yan Wong®#, Michael Ibbotson'-®, and Hamish Me-
fin1!5*

"National Vision Research Institute, Australian College of Optometry, Australia
2NeuroEngineering Laboratory, Dept. Biomedical Eng., University of Melbourne, Australia
3Dept. of Physiology, Monash University, Australia

“Dept. of Electrical & Computer Systems Eng., Monash University, Australia

SARC Centre of Excellence for Integrative Brain Function, University of Melbourne, Australia

Cholinergic Modulation of DG-CA3 microcircuit dynamics and function
Luke Prince'*, Krasimira Tsaneva-Atanasova®?, and Jack Mellor!

"Centre for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol,
UK

2Department of Mathematic, College of Engineering, Mathematics and Physical Sciences, University of Exeter,
Exeter, UK

3EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK

Subthalamic nucleus low frequency fluctuations carry information about future economic deci-
sions in parkinsonian gamblers

Alberto Mazzoni'*, Manuela Rosa?, Jacopo Carpaneto’, Luigi Romito®, Alberto Priori®#4, and Silvestro
Micera'®

" Translational Neural Engineering, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pontedera, ltaly
2Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico, Milan, Italy

3Movement Disorders Department, Neurological Institute Carlo Besta, Milan, Italy

“Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy

%Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering and Center for Neuro-
prosthetics, Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland

Data-driven computational modeling of CA1 hippocampal principal cells and interneurons

Rosanna Migliore'*, Carmen Alina Lupascu’, Francesco Franchina', Luca Leonardo Bologna', Ar-
mando Romani?, Christian Rossert?, Sara Saray®, Jean-Denis Courcol?>, Werner van Geit?, Szabolcz
Kali®, Alex Thomson*, Audrey Mercer?, Sigrun Lange*®, Joanne Falck*, Eilif Muller?, Felix Schurmann?,
and Michele Migliore'

' Institute of Biophysics, National Research Council, Palermo, ltaly

2Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne Biotech Campus, Geneva, Switzerland
3Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary

“University College London, United Kingdom

SUniversity of Westminster, London, United Kingdom

The interplay between basal ganglia and cerebellum in motor adaptation
Dmitrii Todorov, Robert Capps, William Barnett, and Yaroslav Molkov*

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA

Microscopic and macroscopic dynamics of heural populations with delays
Federico Devalle'?*, Diego Paz6®, and Ernest Montbrié’

" Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
2Department of Physics, Lancaster University, Lancaster, UK
3Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
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Motivation signal in anterior cingulate cortex during economic decisions
Gabriela Mochol'*, Habiba Azab?, Benjamin Hayden?, and Rubén Moreno - Bote'

Center for Brain and Cognition and Department of Information and Communications Technologies, University
Pompeu Fabra, Barcelona, Spain

2Department of Brain and Cognitive Sciences and Center for Visual Sciences, University of Rochester, Rochester,
NY, USA

A simple computational model of altered neuromodulation in cortico-basal ganglia dynamics
underlying bipolar disorder

Pragathi Priyadharsini Balasubramani', Srinivasa Chakravarthy?, and Vignayanandam Muddapu?®*

"Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA
2Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, IIT- Madras, Chennai, TN, India

Theta/alpha coordination of pre-motor and parietal networks during free behavior in rats
Medorian Gheorghiu'*, Bartul Mimica?, Jonathan Withlock?, and Raul C Muresan'

"Romanian Institute of Science and Technology, Cluj-Napoca, Cluj, Romania
2Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Trondheim, Norway

Information theoretic approach towards identifying changes in cellular-level functional connec-
tivity and synchrony across animal models of schizophrenia

Jennifer Zick'-?*, Kelsey Schultz*, Rachael Blackman'-?3, Matthew Chafee’-3, and Theoden Netoff'#

! Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA

2Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, MN, USA
3Brain Sciences Center, VA Medical Center, Minneapolis, MN, USA

“Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA

Neural Suppression with Deep Brain Stimulation using a Linear Quadratic Regulator
Nicholas Roberts'*, Vivek Nagaraj?, Andrew Lamperski®, and Theoden Netoff'

" Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
2Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
3Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA

Reinforcement learning for phasic disruption of pathological oscillations in a computational
model of Parkinson’s disease

Logan Grado'*, Matthew Johnson'2, and Theoden Netoff'

' Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
2Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States

Metrics for detection of delayed and directed coupling
David Darrow'*, Theoden Netoff2

" Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
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Insurgence of network bursting events in formed neuronal culture networks: a computational
approach

Davide Lonardoni'*, Hayder Amin', Stefano Di Marco?, Alessandro Maccione', Luca Berdondini’, and
Thierry Nieus'3

"Neuroscience and Brain Technology Department, Fondazione Istituto Italiano di Tecnologia, Genova, ltaly
2Scienze cliniche applicate e biotecnologiche, Universita dell’Aquila, LAquila, Italy
3Dept. of Biomedical and Clinical Sciences "Luigi Sacco’, University of Milan, Italy

Brian2GeNN: Free GPU Acceleration for Brian 2 Users
Marcel Stimberg', Dan F M Goodman?, and Thomas Nowotny3*

"Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
2Department of Electrical and Electronic Engineering, Imperial College, London, UK
3School of Engineering and Informatics, University of Sussex, Brighton, UK

Spike counts in the visual cortex consistently encode both stimuli and behavioral choices in a
change-detection task.

Veronika Koren'2*, Valentin Dragoi®, and Klaus Obermayer'-?

"Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Tech-
nische Universitét Berlin, Berlin, Germany

2Bernstein Center for Computational Neuroscience Berlin, Germany

3Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas, US

Local topology of connectome stabilizes critical points in mean field model
Samy Castro’-?*, Mariano Fernandez®, Wael El-Deredy*, and Patricio Orio'®

"Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, 2360102, Chile
2Programa de Doctorado en Ciencias, mencién en Neurociencia, Facultad de Ciencias, Universidad de Valparaiso,
Valparaiso, 2360102, Chile

3| aboratorio de Electrénica Industrial, Control e Instrumentacién, Universidad Nacional de La Plata, La Plata,
Argentina

“Escuela de Ingenieria Biomédica, Universidad de Valparaiso, 2362905, Valparaiso, Chile

%Instituto de Neurociencia, Universidad de Valparaiso, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso,
2360102, Chile

How chaos in neural oscillators determine network behavior
Kesheng Xu', Jean Paul Maidana', and Patricio Orio'-2*

"Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
2Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile

STEPS 3: integrating stochastic molecular and electrophysiological neuron models in parallel
simulation

Weiliang Chen'*, lain Hepburn', Francesco Casalegno?, Adrien Devresse?, Aleksandr Ovcharenko?,
Fernando Pereira?, Fabien Delalondre?, and Erik De Schutter’

" Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Japan
2Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Switzerland

A conductance-based model of cerebellar molecular layer interneurons
Peter Bratby, Erik De Schutter*

Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
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An Ultrasensitive ON/OFF Switch Mechanism Controls the Early Phase of Cerebellar Plasticity
Andrew Gallimore*, Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa,
Japan

The use of hardware accelerators in the STochastic Engine for Pathway Simulation (STEPS)
Guido Klingbeil*, Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan

A model of CaMKIl sensitivity to the frequency of Ca2+ oscillations in Cerebellar Long Term
Depression

Criseida Zamora*, Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa,
Japan

Exploring the response to climbing fiber input in Purkinje neurons by a new experimental data
based model

Yunliang Zang*, Erik De Schutter

Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa,
Japan

Effects of network topology perturbations on memory capacity in a hippocampal place cell
model

Patrick Crotty*, Eric Palmerduca

Department of Physics and Astronomy, Colgate University, Hamilton, NY, USA

A NEST-simulated cerebellar spiking neural network driving motor learning

Alberto Antonietti'*, Claudia Casellato’, Csaba Erd?, Egidio Dangelo®, Marc-Oliver Gewaltig?, and
Alessandra Pedrocchi'

" Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
2Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Biotech Campus, Geneva, Switzerland
3Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

Spike-based probabilistic inference with correlated noise
llja Bytschok'*, Dominik Dold', Johannes Schemmel’, Karlheinz Meier', and Mihai A. Petrovici'-?

"Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
2Department of Physiology, University of Bern, Bern, Switzerland

Optimal refractoriness from a rate-distortion perspective
Hui-An Shen*, Simone Surace, and Jean-Pascal Pfister

Institute of Neuroinformatics, UZH and ETHZ, Zurich, Switzerland

Towards online accurate spike sorting for hundreds of channels
Baptiste Lefebvre, Marcel Stimberg, Olivier Marre, and Pierre Yger*
Institut de la Vision, INSERM UMRS 968, CNRS, Paris, France
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Modeling orientation preference in the apical and basal trees of L2/3 V1 neurons
Athanasia Papoutsi'*, Jiyoung Park?, Ryan Ash?, Stelios Smirnakis?, and Panayiota Poirazi’

"IMBB, FORTH, Heraklion, Crete, Greece
2Neurology, Baylor College of Medicine, Houston, Texas, USA

Dual recordings in the mouse auditory brainstem and midbrain reveal differences in the pro-
cessing of vocalizations

Richard Felix!, Alexander G Dimitrov'-2*, and Christine Portfors’

"Department of Integrative Biology and Neuroscience, Washington State University Vancouver, Vancouver WA,
USA
2Department of Mathematics and Statistics, Washington State University Vancouver, Vancouver WA, USA

Modelling of leg decoupling in the stick insect and its possible significance for understanding
the workings of the locomotor system

Silvia Daun'2*, Tibor Toth'

"Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
2Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Ger-
many

Spatio-temporal dynamics of key signaling molecules in growth cones
Joanna Jedrzejewska-Szmek'*, Nadine Kabbani'?, and Kim Avrama Blackwell'3

"Krasnow Institute, George Mason University, Fairfax, VA, USA
2School of Systems Biology, George Mason University, Fairfax, VA, USA
3Bioengineering Department, George Mason University, Fairfax, VA, USA

A simulation of EMG signal generation following TMS

Bahar Moezzi'?*, Natalie Schaworonkow?®, Lukas Plogmacher®, Mitchell R. Goldsworthy?#, Brenton
Hordacre?, Mark D McDonnell!, Nicolangelo lannella’®, Michael C. Ridding?, and Jochen Triesch®

"Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical
Sciences, University of South Australia, Australia

2Robinson Research Institute, School of Medicine, University of Adelaide, Australia

3Frankfurt Institute for Advanced Studies, Germany

“Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia

°School of Mathematical Sciences, University of Nottingham, UK

The effect of LTP, LTD and non-specific LTD on the Recognition of Sparse Noisy Patterns in
Simplified and Detailed Purkinje Cell Models

Reinoud Maex', Karen Safaryan?, and Volker Steuber®*

"Department of Cognitive Sciences, Ecole Normale Superieure, rue d’Ulm 25, Paris, France
2Department of Physics and Astronomy, Knudsen Hall, University of California, Los Angeles, CA, USA
3Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, Hatfield, UK

Modeling causality of the smoking brain
Rongxiang Tang', Yi-Yuan Tang?*

" Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
2Department of Psychological Sciences, Texas Tech University, TX, USA
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Modeling causality of the smoking brain
Rongxiang Tang', Yi-Yuan Tang?*

" Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
2Department of Psychological Sciences, Texas Tech University, TX, USA

Modelling of calcium waves in astrocytic networks induced by neural activity
Darya V. Verveyko'*, Alexey Brazhe?, Andrey Verisokin', and Dmitry Postnov®

" Department of Theoretical Physics, Kursk State University, Kursk, Russian Federation
2Department of Biophysics, Lomonosov Moscow State University, Moscow, Russian Federation
3Department of Physics, Saratov State National Research University, Saratov, Russian Federation

Simulated voltage clamp: Offline biophysical reconstruction of fast ionic currents in large cells
with uncompensated series resistance

Cengiz Gunay'-?*, Gabriella Panuccio®, Michele Giugliano®, and Astrid A Prinz'

"Dept. Biology, Emory University, Atlanta, GA, USA
2School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
3Theoretical Neurobiology & Neuroengineering Lab, Dept. Biomedical Sciences, University of Antwerp, Belgium

Representing and implementing cognitive sequential interactions
Pablo Varona'*, Mikhail I. Rabinovich?

"Grupo de Neurocomputacién Biolégica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, Spain
2BioCircuits Institute, University of California, San Diego, USA

An integrated neuro-mechanical model of C. elegans locomotion
Jack Denham*, Thomas Ranner, and Netta Cohen

School of Computing, University of Leeds, Leeds, UK

A computational approach to understanding functional synaptic diversity: the role of nanoscale
topography of Ca2+ channels and synaptic vesicles

Maria Reva'*, Nelson Rebola', Tekla Kirizs?, Zoltan Nusser?, and David Digregorio'

"Laboratory of Dynamic Neuronal Imaging, Neuroscience Department, Institute Pasteur, Paris, France
2Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary

Is object saliency perceived different cross-culturally: A computational modelling study
Eirini Mavritsaki'?*, Panos Rentzelas'

" Department of Psychology, Birmingham City University, Birmingham, UK
2School of Psychology, University of Birmingham, Birmingham, UK
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NeuroNLP: a natural language portal for aggregated fruit fly brain data

Nikul Ukani', Adam Tomkins?*, Chung-Heng Yeh', Wesley Bruning?, Allison Fenichel*, Yiyin Zhou', Yu-
Chi Huang®, Dorian Florescu?, Carlos Luna Ortiz2, Paul Richmond®, Chung-Chuan Lo®, Daniel Coca?,
Ann-Shyn Chiang®, and Aurel A Lazar'

" Department of Electrical Engineering, Columbia University, New York, NY, USA

2Department of Automatic Control & Systems Engineering, The University of Sheffield, Sheffield, UK
3 Department of Computer Science, Columbia University, New York, NY, USA

“Data Science Institute, Columbia University, New York, NY, USA

Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan

6Department of Computer Science, The University of Sheffield, Sheffield, UK

Towards prediction of plasticity response to paired cTBS from resting state network connectivity
Bahar Moezzi'*, Brenton Hordacre', Mitchell R. Goldsworthy'2, and Michael Ridding'

"Robinson Research Institute, School of Medicine, University of Adelaide, Australia
2Dpiscipline of Psychiatry, School of Medicine, University of Adelaide, Australia

Mathematical Analysis of Transient “domino effect” like Brain Dynamics
Jennifer Creaser'*, Congping Lin', Peter Ashwin', Jonathan Brown?, and Thomas Ridler?

"Department of Mathematics, University of Exeter, Exeter, UK
2Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK

Synchronized neocortical dynamics during NREM sleep
Daniel Levenstein'2*, Brendon Watson?2, Gyorgy Buzsaki'?, and John Rinzel'#

"Center for Neural Science, New York University, New York, NY, USA

2NYU Neuroscience Institute, New York University, New York, NY, USA

3Dept. of Psychiatry, Weill Cornell Medical Center, New York, NY, USA

“Courant Institute for Mathematical Sciences, New York University, New York, NY, USA

Accumulation process and multi-layer mechanisms of perceptual alternation in auditory stream-
ing
Rodica Curtu', Anh Nguyen', and John Rinzel?

"Department of Mathematics, The University of lowa, lowa City, IA, USA
2Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

The Necessity of Sleep and Wake: Synaptic Homeostasis via System-Level Plasticity and the
Ascending Arousal System

Sahand Assadzadeh2*, Peter Robinson'2

"School of Physics, The University of Sydney, NSW, Australia
2Center for Integrative Brain Function, The University of Sydney, NSW, Australia

Low- and high-mode waking states in the corticothalamic system
Sanz-Leon Paula’2*, Peter Robinson'2

"School of Physics, University of Sydney, New South Wales, Australia
2Center for Integrative Brain Function, University of Sydney, New South Wales, Australia
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Closed-loop temporally structured light stimulation in weakly electric fish

Caroline Garcia Forlim'2*, Lirio O. B. de Almeida®, Angel Lareo*, Reynaldo D Pinto3, Pablo Varona®,
and Francisco B Rodriguez*

"Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany

2Departamento de Fisica Geral, Universidade de Sao Paulo, Sao Paulo, Brazil

3Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, Brazil

4Escuela Politécnica Superior, Universidad Autonoma de Madrid, Madrid, Spain

Information-theoretic analysis of temporal code-driven stimulation applied to electroreception

Angel Lareo'*, Caroline Garcia Forlim?, Reynaldo D Pinto®, Pablo Varona', and Francisco B Ro-
driguez!

"Grupo de Neurocomputacién Biolégica, Departamento de Ingenieria Informatica, Escuela Politécnica Superior,
Universidad Auténoma de Madrid, Spain

2Clinic and Policlinic for Psychiatry and Psychotherapy, University Medical Center, Hamburg-Eppendorf, Hamburg,
Germany

3Lab. Neurodynamics/Neurobiophysics - Dept. Physics and Interdisciplinary Sciences - Institute of Physics of Sdo
Carlos, Universidade de Sao Paulo - Brazil

Gain control mechanism based on lateral inhibition of antennal lobe improves pattern recogni-
tion performance under wide concentration variability

Aaron Montero'*, Thiago Mosqueiro?, Ramon Huerta'?, and Francisco B Rodriguez’

"Grupo de Neurocomputacion Biolégica, Dpto. de Ingenieria Informatica, Escuela Politécnica Superior, Universidad
Auténoma de Madrid, Madrid, Spain
2BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA.

Maximum Relative Area as a Feature for Adaptability in ERP-based BCI Systems
Vinicio Changoluisa'?*, Pablo Varona', and Francisco B Rodriguez’

"Grupo de Neurocomputacién Biolégica, Dpto. de Ingenieria Informatica. Escuela Politécnica Superior. Universidad
Auténoma de Madrid, Spain
2Universidad Politécnica Salesiana, Quito, Ecuador

Intrinsically stochastic neuron models for use in network simulations
Vinicius Cordeiro, César Ceballos, Nilton Kamiji, and Antonio C Roque*

Departamento de Fisica-FFCLRP, Universidade de S&o Paulo, Brazil

Modeling action potential and network effects after site-directed RNA editing of sodium channels
William W Lytton'2*, Andrew Knox3, and Joshua Rosenthal*

" Depts. of Physiology&Pharmacology and Neurology, SUNY Downstate, Brooklyn, NY, USA
2Dept. of Neurology, Kings County Hospital, Brooklyn, NY, USA

3Dept. of Neurology, University of Wisconsin, Madison, W/, USA

“Dept. of Neurobiology, Marine Biological Laboratory, Woods Hole, MA, USA
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Movement-related delta-theta synchronization in young and elderly healthy subjects

Silvia Daun'2*, Svitlana Popovych'?2, Liging Liu'-2, Bin Wang', Tibor Toth?, Christian Grefkes'-3, Gereon
Fink'3, and Nils Rosjat'?

"Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Ger-
many

2Heisenberg Research Group of Computational Neuroscience — Modeling Neural Network Function, Department
of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany

3Department of Neurology, University Hospital Cologne, Cologne, Germany

ePyNN: a low cost embedded system for simulating Spiking Neural Networks

Abraham Perez-Trujillo!, Andres Espinal?, Marco A. Sotelo-Figueroa?, lvan Cruz-Aceves?, and Horacio
Rostro-Gonzalez'*

"Department of Electronics, University of Guanajuato, Guanajuato, Mexico
2Department of Organizational Studies, University of Guanajuato, Guanajuato, Mexico
3CONACYT, Mathematics Research Center (CIMAT), Guanajuato, Mexico

Temporal structure of bilateral coherence in essential and physiological hand tremor

Martin Zapotocky'?*, Soma Chakraborty'-?, Martina Hoskovcova?, Jana Kopecka?, Olga Ulmanova?,
and Evzen Ruzicka?

' Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
2Department of Neurology, First Faculty of Medicine, Charles University in Prague, Czech Republic

Detecting joint pausiness in parallel spike trains
Matthias Gaertner'*, Sevil Duvarci?, Jochen Roeper?, and Gaby Schneider’

!Institute of Mathematics, Goethe-University, Frankfurt, Germany
2Neuroscience Center, Institute of Neurophysiology, Goethe-University, Frankfurt, Germany

A stochastic model relates responses to bistable stimuli to underlying neuronal processes
Stefan Albert'*, Katharina Schmack?, and Gaby Schneider!

!Institute of Mathematics, Goethe-University, Frankfurt, Germany
2Department of Psychiatry and Psychotherapy, Charité Universitdtsmedizin, Berlin, Germany

Function and energy consumption constrain biophysical properties of neurons - an exam-
ple from the auditory brainstem

Michiel Remme'*, John Rinzel?, and Susanne Schreiber’

"Institute for Theoretical Biology, Humboldt University, and Bernstein Center for Computational Neuroscience,
Berlin, Germany

2Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY,
USA

The Brain Simulation Platform of the Human Brain Project: collaborative web applications and
tools for data-driven brain models

Michele Migliore'!, Carmen Alina Lupascu'*, Luca Leonardo Bologna', Rosanna Migliore', Stefano M.
Antonel?, Jean-Denis Courcol?, and Felix Schiirmann?

' Institute of Biophysics, National Research Council (CNR), Palermo, Italy
2Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
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A Single Pyramidal-Cell and Network Computational Model of the Hippocampal CA3 Region
Sami Gelikok*, Eva M. Navarro-Lépez, and Neslihan Serap Sengér

Functional connectivity between prefrontal cortex and striatum showed by computational model
Rahmi Elibol*, Neslihan Serap Sengér

Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey

A spiking neural network model of basal ganglia-thalamocortical circuit with Brian2
Mustafa Ozdemir*, Neslihan Serap Sengér

Electronic-Communication Department, Istanbul Technical University, Istanbul, Tirkiye

Coordinate-transformation spiking neural network for spatial navigation
Tianyi Li*, Angelo Arleo, and Denis Sheynikhovich
Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France

Micro-connectomics with cognitive task selectivity
Akihiro Nakamura', Masanori Shimono'-2*

"Osaka University, Toyonaka, Osaka, Japan
2Riken Brain Science Institute, Saitama, Japan

Does reinforcement leaning explain zone-allocation behavior between two competing mice?
Youngio Song'*, Sol Park'2, Ilhwan Choi?, Jaeseung Jeong'?, and Hee-Sup Shin?

" Department of Bio and Brain Engineering, KAIST, Daejeon, Rep. of Korea
2Center for Cognition and Sociality, IBS, Daejeon, Rep. of Korea
3 Program of Brain and Cognitive Engineering, KAIST, Daejeon, Rep. of Korea

Optimal synaptic scaling emerges from Hebbian learning rules in balanced networks
Sadra Sadeh, Padraig Gleeson*, and R Angus Silver

Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

Deciphering the contributions of oriens-lacunosum/moleculare (OLM) cells during local field
potential (LFP) theta rhythms in CA1 hippocampus

Alexandra Chatzikalymniou'?*, Frances Skinner'32

"Krembil Research Institute, University Health Network, Toronto, ON, Canada
2Department of Physiology, University of Toronto, Toronto, ON, Canada
3Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada

Nonlinear optimal control of brain networks
Lazaro Sanchez-Rodriguez*, Roberto Sotero

Hotchkiss Brain Institute and Department of Radiology, University of Calgary, Calgary, Alberta, Canada

An inhibitory microcircuit that amplifies the redistribution of somatic and dendritic inhibition
Loreen Hertaeg*, Owen Mackwood, and Henning Sprekeler

Modelling of Cognitive Processes, Berlin Institute of Technology and Bernstein Center for Computational Neuro-
science, Berlin, Germany
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Learning grid cells in recurrent neural networks
Steffen Puhlmann'*, Simon N. Weber'2, and Henning Sprekeler'?

"MKP, Modelling of cognitive processes, Berlin Institute of Technology, Berlin, Germany
2Bernstein Center for Computational Neuroscience, Berlin, Germany

A model of perceptual learning, biases, and roving
David Higgins'2*, Henning Sprekeler'?

"Modelling of Cognitive Processes, TU Berlin, Germany
2Bernstein Center for Computational Neuroscience, Berlin, Germany

Presynaptic inhibition provides a rapid stabilization of recurrent excitation in the face of plastic-
ity
Laura Naumann'2*, Henning Sprekeler'?

"Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin, Germany
2Bernstein Center for Computational Neuroscience, Berlin, Germany

A grid score for individual spikes of grid cells
Simon N. Weber'2*, Henning Sprekeler'+?

"Berlin Institute of Technology, Berlin, Germany
2Bernstein Center for Computational Neuroscience, Berlin, Germany

Cortical circuits implement optimal integration of context
Ramakrsinan lyer, Stefan Mihalas*

Allen Institute for Brain Science, Seattle, WA, USA

Neural cross-frequency coupling functions in the resting state with eyes open and eyes closed
Valentina Ticcinelli'*, Tomislav Stankovski'?, Peter V.e. McClintock’, and Aneta Stefanovska'

"Department of Physics, Lancaster University, Lancaster, United Kingdom
2Faculty of Medicine, Ss Cyril and Methodius University, Skopje, Macedonia

Dissecting the total astrocytic potassium current in a computational model
Predrag Janjic'*, Dimitar Solev®, Gerald Seifert?, Ljup_o Kocarev', and Christian Steinh&user?

"Laboratory for Complex Systems and Networks, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
2Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
3Unaffiliated, dimitar.solev@gmail.com

Information rate of multiple synaptic release sites with separately released vesicles during short-
term depression

Mehrdad Salmasi'23*, Stefan Glasauer'%34, and Martin Stemmler2>

" Graduate School of Systemic Neurosciences, Ludwig-Maximilian University, Munich, Germany
2Bernstein Center for Computational Neuroscience, Munich, Germany

3German Center for Vertigo and Balance Disorders, Ludwig-Maximilian University, Munich, Germany
“Department of Neurology, Ludwig-Maximilian University, Munich, Germany

°Department of Biology Il, Ludwig-Maximilian University, Munich, Germany
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Properties of recurrent networks at maximum capacity for storing sequences of network states
Danke Zhang, Chi Zhang, and Armen Stepanyants*

Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University,
Boston, MA, USA

Modulation of epileptic activity in thalamo-cortical networks by input from the cerebellar nuclei

Julia Goncharenko', Lieke Kros?, Neil Davey', Christoph Metzner!, Chris de Zeeuw?, Freek Hoebeek?,
and Volker Steuber'*

"Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, UK
2Department of Neuroscience, Erasmus MC, Wytemaweg 80, Rotterdam, The Netherlands

The effect of homeostatic structural plasticity on associative memory in a network with spike-
time dependent inhibitory synaptic plasticity

Ankur Sinha*, Christoph Metzner, Roderick Adams, Michael Schmuker, Neil Davey, and Volker Steuber
Biocomputation Group, University of Hertfordshire, Hatfield, UK

The dependence of arithmetic operations on input location in cerebellar nucleus and cortical
pyramidal neurons

Maria Psarrou*, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Michael Schmuker, and Volker
Steuber

Centre for Computer Science and Informatics Research, University of Hertfordshire, UK

A Framework for Automated Validation and Comparison of Models of Neurophysiological and
Neurocognitive Biomarkers of Psychiatric Disorders

Christoph Metzner'*, Achim Schweikard®, Tuomo Maki-Marttunen®, Bartosz Zurowski*, and Volker
Steuber’

"Centre for Computer Science and Informatics Research, University of Hertfordshire, United Kingdom
2Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
SNORMENT, Institute of Clinical Medicine, University of Oslo, Norway

“Department of Psychiatry, University of Luebeck, Schleswig-Holstein, Luebeck, Germany

Synergetic and redundant information flow in dynamical systems: an operative definition based
on prediction

Daniele Marinazzo'*, Luca Faes?, and Sebastiano Stramaglia®

" Department of Data Analysis, Ghent University, Ghent, Belgium
2BIOtech, Dept. of Industrial Engineering, University of Trento, and IRCS-PAT FBK, Trento, ltaly
3Dipartimento di Fisica, Universita degli Studi Aldo Moro, Bari, and INFN, Sezione di Bari, Bari, ltaly

Forming and Using Hierarchical Cognitive Maps: a Neural Network Model
Henry Jordan*, Simon Stringer

OFTNAI, Dept. Experimental Psychology, University of Oxford, UK

Harmonic SSEP Spectra are Determined by Modulation of Population Firing Rate — a Modeling
Study

Elzbieta Gajewska-Dendek*, Piotr Suffczynski

Department of Biomedical Physics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
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Computational measure to account for erroneous neural deactivation when oxygen supply can-
not meet metabolic demand in neuroimaging studies

Nicoladie Tam'*, George Zouridakis?, and Luca Pollonini?

" Department of Biological Sciences, University of North Texas, Denton, TX, USA
2Departments of Engineering Technology, Computer Science, and Electrical and Computer Engineering, University
of Houston, Houston, TX, USA

Mapping large-scale brain networks using multivariate pattern analysis
Yi-Yuan Tang'*, Rongxiang Tang?, and J Lewis-Peacock®

"Department of Psychological Sciences, Texas Tech University, TX, USA
2Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
3Department of Psychology, The University of Texas at Austin, Austin, TX, USA

Interplay between propagation delay and frequency of oscillation determines emergent struc-
tures of neuronal networks driven by triplet-based STDP

Mojtaba Madadi Asl'*, Alireza Valizadeh'?, and Peter A. Tass®

" Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
2School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
3Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, USA

X078 Plasticity and network implications of a synaptic LPA-signalling pathway
Andreas Nold'*, Wei Fan?, Sara Konrad', Heiko Endle?, Johannes Vogt?, and Tatjana Tchumatchenko'

"Theory of Neural Dynamics, Max Planck Institute for Brain Research, Frankfurt, Germany
2Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University,
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