
Real-Time Simulation
of Large-Scale Neural

Models using NCS
Laurence C. Jayet Bray

Roger V. Hoang
Emily R. Barker

Frederick C. Harris, Jr.

Organization for Computational Neurosciences
2012

Saturday, July 21

UNR Brain Computation Lab

Today’s Outline
• First Hour

o Introduction
o Equations and Implementation
o Requirements and Simulation on a Single Machine
o Input Language

• Second Hour
o Simple Model
o Parameters Presentation and Testing
o Output Analysis

• Third Hour
o Simulation on Multiple Machines
o Software Tools
o Robotic System Configuration
o Larger Networks and Complete Loop Execution
o Future Directions and Summary

Today’s Outline
• First Hour

o Introduction
o Equations and Implementation
o Requirements and Simulation on a Single Machine
o Input Language

• Second Hour
o Simple Model
o Parameters Presentation and Testing
o Output Analysis

• Third Hour
o Simulation on Multiple Machines
o Software Tools
o Robotic System Configuration
o Larger Networks and Complete Loop Execution
o Future Directions and Summary

Introduction

Presenters
• Fred Harris

o Professor – Department of Computer Science and Engineering
• Ph.D. in Computer Science

• Laurence Bray
o Post Doctoral Research Associate,

• Soon to be promoted to Research Assistant Professor
• Ph.D. in Biomedical Engineering

• Roger Hoang
o Ph.D. Candidate

• Planning to graduate this coming school year
• Majoring in Computer Science

• Emily Barker
o B.S. Student

• Starting her Senior year this fall
• Majoring in Neuroscience

Reno, Nevada

University of Nevada, Reno

Brain Computation Lab
• http://www.cse.unr.edu/brain/

NCS History
• Version 1:1999

o Matlab – Goodman, Markram, and McKenna
o 160-cell, 2-column architecture

• Each cell was modeled as a single integrative compartment (point
neuron) with a spike mechanism,
o calcium-dependent (AHP) channels, and
o voltage-sensitive A and M (muscarinic) potassium channels

• Version 1b: 1999
o Direct translation to C from Matlab
o 24 times faster.
o tested on mixed excitatory-inhibitory networks of up to 1,000 cells

• Version 2: 1999
o code was then redesigned and rewritten for distributed processing on an

existing 20-cpu cluster (Pentium II).
o Initial trials of this code were performed on cortical networks of 2 to 1,000 cells

M.M. Kellog, H.R. Wills, and P.H. Goodman. “A biologically realistic computer model of neocortical
associative learning for the study of aging and dementia.” J. Investig. Med., 47(2), February 1999.

NCS History
• Version 3: 2001

o completely redesigned using object-oriented design
principles and recoded in C++

o objects, such as cells, compartments, channels, and
the like, model the corresponding cortical entities.

o The cells, in turn, communicate via messages passed
through synapse objects.

o Input parameters allow the user to create many
variations of the basic objects, in order to model
measured or hypothesized biological properties.

E. Courtenay Wilson, Phillip H. Goodman, and Frederick C. Harris, Jr. “Implementation of a
biologically realistic parallel neocortical-neural network simulator” in Proceedings of the 10th SIAM
Conf. on Parallel Process. for Sci. Computing, Portsmouth, Virginia, March 2001.

NCS History

E. Courtenay Wilson, Frederick C. Harris, Jr., and Phillip H. Goodman. “A large-scale biologically
realistic cortical simulator” in Proceedings of SC 2001, Denver, Colorado, November 2001

Code Optimization &
Revisions

• Rewrote the input parser
• Worked on code base

o sevenfold sequential speedup over the version 3 code
o added new features while shrinking our code base by

more than 25%.

• Added More Biological Parameters.
• 35,000 cells and approximately 6.1

million synapses using 72% of the
available 4GB of memory per node.

Code Optimization

James Frye, James G. King, Christine J. Wilson, and Frederick C. Harris, Jr. “QQ: Nanoscale timing
and profiling” In Proceedings of PMEO-PDS, Denver, CO, April 3-8 2005.

Code Optimization

2001

P IV Xeon 2.2GHz
(68 CPUs)

2002

ONR DURIP 2002: N000140210557

Hardware

PIII 1GHz
(60 CPUs)

ONR DURIP 2001: N000140110552

Myrinet 2000

2007

Hardware

Sun v20z Opteron
(60 CPUs)

ONR DURIP 2007:

Sun 4600s and 4500s
16 core boxes with 200GB of RAM

connected by Infiniband
And several 24TB disk arrays

2008

ONR DURIP 2008:

Current NCS version 6

• GPU/CPU/cluster-based
• Multiple neuron types (version 5

+ izhikevich + framework for
others)

• Ability for multi-scale modeling

Current Hardware

Current Optimizations
• C++11

• Heavily threaded

o Latency hiding
o Increased occupancy

• Modular message passing design

• GPU usage for parallel computation

• Load-balancing across heterogeneous clusters

Current Optimization

Cell
 Count Synapse Count

NCS5
Simulation
Time (Sec)

NCS6
Simulation
Time (Sec)

~1,000 ~2700 3.3 <1

~10,000 ~250,000 4.4 <1

~100,000 ~25,000,000 99.0 1.1

Comparison with other
Simulators

• Advantages:
o No programing language experience
o Large-scale networks simulation
o Real-time Execution
o Good for behavior, systems, and networks
o Framework for different level of abstraction

• Disadvantages
o Lack of cellular and subcellular details
o No anatomical visualization yet

 Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M. Bower,
Markus Diesmann, Abigail Morrison, Philip H. Goodman, Frederick C. Harris, Jr., Milind Zirpe,
Thomas Natschlager, Dejan Pecevski, Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier
Rochel, Thierry Vieville, Eilif Muller, Andrew P. Davison, Sami El Boustani and Alain Destexhe
“Simulation of networks of spiking neurons: A review of tools and strategies" Journal of
Computational Neuroscience December 2007 (Vol 23), pp 349-398.

Equations and
Implementation

Compartments

Ka Channels

Kahp Channels

Km Channels

Short-Term
Learning

Long-Term
Negative
Learning

Long-Term
Positive

 Learning

Post Synaptic
Conductance

NCS 6 Implementation
• Plugin interface for multiple model support

o Currently have:
• NCS 5 LIF Neurons
• Izhikevich Neurons

o ability to design your own
o Have a student working on a Neuron CPU plugin.

• Runs on CPUs, CUDA devices, and OpenCL devices
simultaneously

Requirements

NCS5 Software /
Hardware

• Linux based operating system

NCS6 Software /
Hardware

• Linux based operating system

• NVDIA GPUs

NCS5- Packages Needed
• bison : sudo apt-get install

 bison
• flex : sudo apt-get install

 flex
• mpi-run : sudo apt-get

 install openmpi-bin
 : sudo apt-get install
 openmpi-dev

NCS6- Packages Needed
• bison : sudo apt-get install bison
• cmake : sudo apt-get install cmake
• cuda toolkit : http://developer.nvidia.com/

o cd /home/userName/Downloads
o sh <cuda_toolkit_installer_name>

• doxygen : sudo apt-get install doxygen
• flex : sudo apt-get install flex
• g++ version 4.4 : sudo apt-get install g++-4.4
• g++ version 4.6+
• mercurial : sudo apt-get install mercurial
• mpi-run : sudo apt-get install openmpi-bin

 : sudo apt-get install openmpi-dev

Simulation on a single
machine

NCS5 Steps
• To compile code:

o Make

• After the code is compiled, you run
NCS5 in the directory with the input
file

• To run code:
o ncs5pe <input file>

NCS6 Steps
• cd /home/userName/NCS6/NCS6/build

• To specify the number of devices available on the

computer for the program (Only do this step once)
o mpirun applications/clusterSpecifier/clusterSpecifier single.cluster
o applications/clusterInfo/clusterInfo single.cluster

• To compile code:

o applications/ncsDistributor/ncsDistributor <space>
../files/NCS6/folderName/fileName single.cluster ncsout

• To run code:

o applications/simulator/simulator/ ncsout

DEMO

Input Language

Brain
• Define the simulation as a whole
• Preliminary outline of other

structures
o Anatomy
o Stimuli
o Reports

• Extrinsic connections
• Include files

Brain

Anatomy

• Columns
• Layers
• Cells
• Compartments
• Channels

Anatomy

Stimulus
• External Stimulation (visual,

audio…)
• Type of signals

o Linear
o Pulse
o Noise
o File-based

• Multiple times
• Different Destinations

Stimulus

Connections

• Extrinsic and intrinsic connections
• Synapse connections
• From the source to the destination
• With or without decaying distance

effects
• Recurrent connections

Connections

Synapses
• Connections between other cells and

their compartments
• Excitatory
• Inhibitory
• Synaptic Waveform
• Learning

o Short term synaptic dynamics
• Facilitation
• Depression

o Long term synaptic dynamics (Hebbian Learning)
• STDP rule

Synapses

Reports
• Data about cells
• Report files:

o Voltage
o Current
o Firecount
o Channel
o Synaptic strengths

• Automatically generated and
saved

Reports

DEMO

Break

Today’s Outline
• First Hour

o Introduction
o Equations and Implementation
o Requirements and Simulation on a Single Machine
o Input Language

• Second Hour
o Simple Model
o Parameters Presentation and Testing
o Output Analysis

• Third Hour
o Simulation on Multiple Machines
o Software Tools
o Robotic System Configuration
o Larger Networks and Complete Loop Execution
o Future Directions and Summary

Simple Model

Architecture
C
o
l
u
m
n

Compartment

Group
Cell 1

Group
Cell 2

Stimulus

L
a
y
e
r

Brain

Brain

Brain

Brain

Brain

Brain

Brain

Brain

Brain

Brain

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Anatomy

Spike shape

Anatomy

Anatomy

Anatomy

Anatomy

Membrane Potential

Channel a

Channel a

Channel m

Channel m

Channel ahp

Channel ahp

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Stimulus

Amplitude

Stimulus

Stimulus

Stimulus

Stimulus

Width / Frequency

Connections

Connections

Connections

Connections

Connections

Probability of
Connections

Probability of
Connections

Synapses

Synapses

Synapses

Synapses

Synapses

Synapses

Synapses

Synapses

Conductance Strength

Conductance Strength

Conductance Strength

Synapses

Synapses

Synapses

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Reports

Output Analysis

Graphing
• Tools:

o Matlab
o GNUplot

• Types of plots

o Dot and Line graphs
o Raster plots
o Spectrogram

Types of Plots

Types of Plots

Types of Plots

DEMO

Break

Today’s Outline
• First Hour

o Introduction
o Equations and Implementation
o Requirements and Simulation on a Single Machine
o Input Language

• Second Hour
o Simple Model
o Parameters Presentation and Testing
o Output Analysis

• Third Hour
o Simulation on Multiple Machines
o Software Tools
o Robotic System Configuration
o Larger Networks and Complete Loop Execution
o Future Directions and Summary

186

CPU
• A single unit of execution (Core)

o Often times sold with multiple cores

• A single instruction executed once per cycle per
core
o i.e. add X and Y

• Most of the silicon in the chip devoted to:
o Branch Handling
o Cache and Memory controllers
o Out of order execution
o etc.

• Design optimized for general preformance

187

CPU Layout

188

GPU
• Groupings of 32 simple cores
• Single instruction executed 32 times per cycle

o i.e. add Xi Yi

• Most of the silicon is devoted to ALUs(Arithmetic
Logic Units)

• Design optimized for parallelism and floating point
math performance

189

GPU Layout

190

CPU vs GPU
• Access to Memory

o CPU much closer to RAM and other memory
o GPU has onboard memory, but

• Programming model
o GPU much more suited to data parallel problems

• typically image processing, graphics, matrix multiplication
• Very array centric
• Avoids pointer manipulation and branching

o CPU much more suited to general computing problems

• Raw floating point performance
o CPU - 100 GFLOPS (i7 980 XE)
o GPU - 1300 GFLOPS (GTX 480)
o Both from 2010

191

MPI
• Message Passing Interface
• Handles the dirty details of networking

o Endianness
o Managing sockets
o Grouping Nodes

• Provides many methods for sending data out
o Single Node to Single Node (Send Receive)
o Single Node to Many Nodes (Scatter)
o Many Nodes to Single Node (Gather)

• Designed for use in high performance networks

Simulation on multiple
machines

One-Time Step
• SSH keys allow password free

access to all computers.
o ssh <computerName>
o ssh-keygen -t rsa
 accept default options
o cd ~/.ssh
o cp id_rsa.pub authorized_keys

• cd /home/userName/NCS6/NCS6/build
• Create a file with .mpi extension. This file specifies the

number of devices available on each computer in
the cluster. For example, we have marbles.mpi file
that contains the following information:

 Brain1 slots=2
 Brain2 slots=2

• After creating a file with .mpi extension, run these
commands:
o mpirun --hostfile marbles.mpi <space>

applications/clusterSpecifier/clusterSpecifier <space>
marbles.cluster

o applications/clusterInfo/clusterInfo marbles.cluster

One-Time Step

Steps
• To compile code:
 applications/ncsDistributor/ncsDistributor
<space> ../files/NCS6/ marbles.cluster
ncsout

• To run code:
mpirun -np numberOfDevices –hostfile
<space> marbles.mpi <space>
applications/simulator/simulator ncsout/

DEMO

Software Tools

NeuroTranslate

• NeuroTranslate
o Software tool that

translates input files
between NCS and
NeuroML

N. Jordan, K. Perry, N. Narala, L. C. Jayet Bray, and F. C. Harris, Jr. Design and implementation of an
NCS-NeuroML translator. In Proceedings of the International Conference on Software Engineering and
Data Engineering (SEDE). Los Angeles, CA, June 2012.

Robotic System
Configuration

Virtual NeuroRobotic
(VNR)

Overview

Filter

NCS
• Models integrate-and-fire neurons

with conductance-based
synapses

• First simulator to support real-time
neurorobotics applications

• Experiments demonstrate
biologically realistic behavior in
real time

Server

• Brain Communication Server (BCS)
• Monitors the robotic avatar and

creates the appropriate stimulus
for proprioceptive feedback and
premotor movement to replicate
the role of a biological brainstem

NCSTools

• NCSTools
o Software package

that simplifies
interaction and
communication
between NCS and
remote agents

C. M. Thibeault, J. Hegie, L. Jayet Bray, and F. C. Harris, Jr. Simplifying neurorobotic development with
ncstools. In Proceedings of the 2012 Conference on Computers and Their Applications. Las Vegas, NV,
March 2012.

Visual / Audio
• Computer vision / audio
• Machine vision / audio
• Image / sound processing

• Filtering mechanisms (e.g. Gabor)

• Applications:

o external input
o reward-based learning

Robotic Interface
• Constructed using
 Webots 5
• Motions were

programmed in C++ using
the provided interfaces
and the communication
was accomplished using
the NCSTools C++ client

Large Networks

Technical Approach

Neuro-
science Modeling

Software
and

Hardware

Virtual
Neuro-

robotics

Brain Model

211

Trust
• Behavior between a humanoid neurorobot and

human actor
o Oxytocin release

• Social reinforcement
• Reduction of inhibition

• Experiment has two conceptual phases:
o Learning

• Neurorobot initiates a sequence of motions
• Human performs concordant or discordant action
• Neurorobot learns to trust the human

o Challenge
• Human reaches for another object
• Depending on whether or not the neurorobot trusts the human the

robot will hand over the object or retract the object

Willingness to exchange token for food

Time spent
facing

Trust and Affiliation

1. Robot brain
initiates arbitrary
sequence of
motions

2. Human moves object
in either a similar
(“match”), or different
(“mismatch”) pattern

Robot Initiates Action Human Responds

LEARNING

Match: robot
learns to trust

Mismatch:
don’t trust

3. Human slowly
reaches for an
object on the table

4. Robot either “trusts”,
(assists/offers the
object), or “distrusts”,
(retract the object).

Human Acts Robot Reacts

CHALLENGE (at any time)

trusted distrusted

Paradigm

Microcircuitry

• Images are processed and values are sent to the simulated
visual pathways (V1, V2 and V4)

• Input closely resembles how visual information is processed
in a biologically realistic brain

Video Input – Gabor
Filtering

Trust the Intent Recognition
Discordant Motions

Trust the Intent Recognition
Concordant Motions

Concordant > Trust Discordant > Distrust

Results

Results

Navigation
• Navigate to familiar location

o Prefrontal Cortex
o Hippocampus
o Subiculum

• Compuational system representing a navigating
rodent

• Reward at the end of a sequence of turns
• Showed learning performance without biased

decisions
• Short-term memory

Paradigm

Microcircuitry

Results

Results

Emotional Speech
• Allows for more natural interaction between

humans and robots
o Determine the ideal behavior from a simple reward feedback

• Emotional Speech processor
o Successfully distinguished “sad” and “happy” utterances

• Integrated into neurorobotic scenario
o The robot received a spoken reward if the correct decision was made

• Neurorobot successfully and consistently learned
the exerceise

• Step toward the combination of human emotions
and virtual neurorobotics

REWARD-BASED LEARNING
THROUGH ESP

L. C. Jayet Bray, G. Ferheyhough, E. Barker, C. M. Thibeault, P. H. Goodman, and F. C. Harris, Jr..
Emotional speech processing in neurorobotics. In revision, 2012.

ESP CLASSIFICATION
PERFROMANCE

ESP RECOGNITION
PERFROMANCE

ESP RECOGNITION
PERFROMANCE

Results

232

Results

Results

Complete Loop
 Execution

Requirements

• Save
oNCS files (NCS_core)
oConfiguration files

(Reward_Based_Learning)
o Robotic files (Webots_Neighborhood)

• Folders in home directory

Steps

• Start voServer on port 20003
o cd /home/username/NCS_core/voServer
o ./server <space> -p <space> 20003

• Open voInterpreter
o cd /home/username/NCS_core/ncstools/bin
o ./volnterpreter <space>

/home/username/Reward_Based_Learning/input/navigation.cfg

• Start NCS
o cd /home/username/Reward_Based_Learning
o ./ncs5e 1 ./input/navigation.in

Steps

• Video Capture
o cd

/home/username/Reward_Based_Learning/card_color_detection
o ./recognize_card

• Start webots and load world
o webots

DEMO

Future Directions

Future Directions
• Multi-Scale/Mixed Models:

o Izhikevich and NCS and … all in the same model

• Published Interface for New Neuron/Synapse
Models
o Allow your own coding of neurons and synapses and use our parallel

code.

• Speed….
o Always here

• More Parameters on NCS Neurons/Synapses

• Visualization: 2D and 3D

Future Directions
• Research into Memory:

• Tools:
o GUI Brain Builder,
o Output Analysis

• ModelDB

• Input language options
o PyNN (like)

Summary

First Hour
• Introduction
• NCS history and development
• Current enhancements
• Equations and Implementation
• Software and hardware requirements
• How to run a small model on a single

machine
• Overview of the input language

Second Hour
• Detailed description of available

parameters
• Demos
• Output analysis

Third Hour
• CPU, GPU, and MPI
• How to run on multiple machines
• Software tools
• Robotic system configuration
• Large scale models
• Complete loop execution
• Future directions

Acknowledgments
• Office of Naval Research

• DARPA Synapse project and HRL

Brain Computation Laboratory
University of Nevada, Reno

in funded collaboration with
U de Cergy-Pontoise and CNRS, Paris, France

University of Bonn, Germany
Brain Mind Institute (Blue Brain Project), EPFL, Lausanne, Switzerland

Mathias Quoy
 René Doursat
Florian Morman

Henry Markram
Jim King

Laurence Jayet Bray Fred Harris, Jr Sergiu Dascalu
 Director

Oral session IV:
Navigation

• Monday July 23
• 10:40 - 11:00
• Talk: O12
• Goal-Related Navigation of a Neuromorphic Virtual

Robot
o Laurence Jayet Bray, Emily Barker, Gareth Ferneyhough, Roger Hoang,

Bobby Bryant, Sergiu Dascalu, and Frederick C Harris

Workshop 4
• Multi-Scale Modeling in Computational

Neuroscience II: Challenges and Opportunities
o Wed: 9-6

Brain Computation Lab
• http://www.cse.unr.edu/brain/

