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Theory of correlation transfer
and correlation structure
Part II: recurrent networks
CNS*2012 tutorial

July 21st, Decatur, Atlanta Moritz Helias

INM-6 Computational and Systems Neuroscience, Jülich, Germany



Why study correlations in the brain?
variable response of cortical neurons to repeated stimuli
neurons share variability, causing correlations
typical count correlation in primates 0.01− 0.25
Cohen & Kohn (2011)

affects the information in the population signal
Zohary et al. (1994); Shadlen & Newsome (1998)

correlations are modulated by attention
Cohen & Maunsell (2009)

correlations reflect behavior
Kilavik et al. (2009)

correlation analysis has been used to infer connectivity
Aertsen (1989), Alonso (1998)

synaptic plasticity is sensitive to correlations
Bi & Poo (1998)
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Outline

in vivo correlations & random networks
theory of correlations in binary random networks

binary neuron model
mean-field solution
balanced state
self-consistency equation for correlations
correlation suppression

theory of correlations in spiking networks
leaky integrate-and-fire model
linear response theory
population averages
exposing negative feedback by Schur transform
fluctuation suppression ↔ decorrelation
structure of correlations
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Local cortical network

N ' 105 neurons / mm3

K ' 104 synapses /
neuron
connection prob. ' 10
percent
layered structure
layer-specific connectivity
different cell types
most importantly:
exc. and inh. cells
different morphologies

abstraction of neurons as points connected by synapses
July 21st, Decatur, Atlanta Moritz Helias slide 4



Asynchronous firing

noise correlations rsc smaller than expected given the amount of
common input (pc = 0.1) and despite signal correlations rsignal

trial averaged response m = 〈x〉trials

count (noise) correlation rsc = 〈〈z1z2〉trials〉Θ with
z = x−m√

〈(x−m)2〉trials

signal corelation rsignal = 〈y1y2〉Θ with y = m−n√
〈(m−n)2〉Θ

and
n = 〈m〉Θ

Ecker A, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010): Science 327: 584

July 21st, Decatur, Atlanta Moritz Helias slide 5



Small correlations

correlations smaller than expected from common input
connectivity pc = 0.1 → 10 percent common presynaptic
partners
correlations differ for ee and for ii pairs
(even if symmetric connectivity assumed in simulations)
naive picture suggests c = cff
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Structure of correlation between input currents

measurement of excitatory and inhibitory currents separately
positive contributions by ee and ii correlations
biphasic contribution by ei correlation

Okun M and Lampl I, Nature neuroscience 11(5) (2008)
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Aim: Understand correlations in recurrent random
networks

external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−

N excitatory and γN inhibitory neurons
neurons all have same internal dynamics
random connectivity with connection probability p = K/N
each exc. synapse has strength J , inh. has strength −gJ
well studied model of local cortical network
van Vreeswijk & Sompolinsky 1996, Amit & Brunel 1997, Brunel 2000
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Why study E-I networks?

activity of neurons in vivo: irregular (∼ Poisson), low rate
↔ broad inter-spike-interval distribution
membrane potential of neurons has strong fluctuations
however, neurons under current injections show regular
activity of single cells
naive view of a network

superposition of many synaptic inputs ⇒ fluctuations vanish
E-I networks achieve irregular activity

membrane potential close to threshold, fluctuations drive firing
simplest network model that explains emergence of balanced
regime in a robust manner
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Description of networks

a b

c

J

J

J −J J =

0 J 0
J 0 0
J −J 0



external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−
po

st

pre
Random network ⇒ Erdös-Renyi weight matrix J = {Jij}, fixed indegree
(van Vreeswijk & Sompolinsky 1996, 1998, Brunel 2000)
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Binary neuron model
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time t ms
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binary state of neuron
ni ∈ {0, 1}

classical model used in neuroscience to
explain irregular, low activity state Vreeswijk & Sompolinsky 1996, 1998

explain pairwise correlations Ginzburg & Sompolinsky 1994

develop theory for higher order correlations Buice et al. 2009

show active decorrelation in recurrent networks Hertz et. al., 2010, Renart

et al. 2010
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Binary neuron model

n = (n1, n2, . . . , nN) ∈ {0, 1}N state of whole network
summed input to neuron i (local field) hi =

∑
k Jiknk + hext

external input hext from other areas

non-linearity H(hi ) =

{
1 for hi > 0
0 else

controls transition
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Binary neuron model
stochastic update with probability dt/τ in interval dt
“Poisson jump process” Feller II (1965), Hopfield (1982)

prob. of up-state Fi (n) = H(hi )
prob. of down-state 1− Fi (n)

implementations of asynchronous update
neuron chosen at exponential intervals of mean duration τ
classical: dicretized time, system’s state propagated by randomly
selecting next neuron for update
interval between updates is identified with dt
→ interpretation τ = dtN

0 500
time t ms

0

1

st
at
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i
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ne
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on
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Binary variables

time point of update chosen randomly
state ni ∈ {0, 1} is a random variable
neuron i assumes state ni with probability pi (ni )

expectation value 〈〉 over initial conditions and stochastic
update time points
mean

mi = 〈ni〉 = pi (0) 0 + pi (1) 1 = pi (1)

variance

ai = 〈 n2i︸︷︷︸
≡ni

〉 −m2
i = mi −m2

i = mi (1−mi )

variance uniquely determined by the mean
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Mean-field solution

enables to determine global features, e.g. firing rate
typically assumes vanishing correlation
starting point to study correlations
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Effective rate dynamics

occupation of states determined by conservation equation
master equation of probability pi (ni ) for neuron i in state ni

d
dt pi (1) = −1

τ
(1− Fi (n)) pi (1)︸ ︷︷ ︸

was up, leaves up-state

+
1
τ

Fi (n) pi (0)︸ ︷︷ ︸
was down, enters up-state

pi (0) + pi (1) = 1

τ
d
dt pi (1) = −pi (1) + Fi (n)

expected state mi = pi (1) 1 + pi (0) 0 = p(1) fulfills same
differential equation

τ
d
dt mi = −mi + Fi (n)

Buice et al. (2009)
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Homogeneous random network

assume single population of neurons
homogeneous network:

each neuron has K inputs drawn randomly
synaptic weight Jik = J each
input statistics is identical for each neuron

τ d
dt mi = −mi + Fi (n) depends on (possibly) all other n

idea of mean-field theory:
express the statistics of n (approximately) by the population
expectation value m = 1

N
∑N

i=1 mi
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Mean-field dynamics

mean activity m = 1
N
∑N

i=1 mi
three assumptions:

nk , nl pairwise independent (1)
large number K of inputs per neuron (2)
homogeneity of mean activity 〈ni〉 = m (3)

(1) ⇒ correlations vanish 0 = 〈ninj〉 − 〈ni〉〈nj〉
(1) k of K inputs are active with binomial prob. B(K ,m, k)

(2) K � 1⇒ kJ ∼ N (µ, σ)

(3) with µ = JKm σ2 = J2Km(1−m)

assumptions allow closure of the problem:
express distribution of n by mean value m alone

van Vreeswijk & Sompolinsky (1998)
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Mean-field dynamics

study gain function Fi (hi ) of single neuron i
hi = kJ ∼ N (µ, σ)

with µ = JKm and σ2 = J2Km(1−m)

〈Fi (n)〉 =

〈
H

∑
j

Jnj + hext

〉

1'
K∑

k=0
B(K ,m, k) H(kJ + hext)

2'
∫
N (x) H(σx + µ+ hext) dx =

1
2 erfc

(
−µ+ hext√

2σ

)
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Mean-field dynamics

τ
dm
dt + m =

1
2 erfc

(
−µ(m) + hext√

2σ(m)

)
≡ Φ(m, hext)

µ(m) = JKm
σ2(m) = J2Km(1−m)

stationarity dm
dt = 0 leads to self-consistency equation

m = Φ(m, hext)
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Fixed-point rate

m = Φ(m, hext)

≡ 1
2 erfc

(
−µ(m) + hext√

2σ(m)

)
−5 0 5

x

0.0

0.5

1.0

1 2
er

fc
(−
x

)

mean µ = JKm ∝ K
fluctuations σ = |J |

√
Km(1−m) ∝

√
K

large K : function Φ has sharp transition at µ(m) + hext ' 0
⇒ solution 0 < m < 1 exists near transition

mean input needs to cancel approximately
µ(m) = KJm ' −hext

van Vreeswijk & Sompolinsky 1996, 1998
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Balanced network

external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−

two subpopulations
N exc neurons
γN inh neurons

random connectivity
JEE , JIE exc synpases
JEI , JII inh synapses

fixed number of incoming
synapses per neuron
K exc synpases
γK inh synapses
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Mean-field equations

population averaged activity mx = 1
Nx

∑
i∈x mi for x ∈ {E , I}

derivation can be generalized in straight forward manner
in general different mean and fluctuations in input to E and I

set of two equation to be solved simultaneously for x ∈ {E , I}:

τ
dmx
dt = −mx + Φx (mE ,mI)

Φx (mE ,mI) =
1
2 erfc

(
−µx (mE ,mI) + hext√

2σx (mE ,mI)

)
µx = K (JxE mE − γJxImI)

σ2x = K (J2
xE mE (1−mE ) + γJ2

xImI(1−mI))
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Balance condition
equilibrium rate

mx = Φx (mE ,mI) =
1
2 erfc

(
−µx (mE ,mI) + hext√

2σx (mE ,mI)

)

µx ∝ K , σx ∝
√

K
K � 1:
solution with non-saturating rate 0 < mE ,mI < 1
⇒ approximate balance µx + hext ' O(

√
K )

approximate solution:

K (JEE mE + γJEImI) + hext ' O(
√

K )

K (JIE mE + γJIImI) + hext ' O(
√

K )
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Balance condition

mean contributions of E and I to synaptic inputs ∼ cancel
fluctuations in input large compared to threshold
⇒ irregualar activity of single cell
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Balance condition
mean contributions of E and I to synaptic inputs ∼ cancel
fluctuations in input large compared to threshold
⇒ irregualar activity of single cell

0 500
time t ms

−2

0

2

h
i

iE

iI

hi =
∑

k Jiknk + hext

active, if hi > 0
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Summary mean field activity

Erdös-Renyi networks: simplest model of local connectivity
assumptions of homogeneity, indepdendence, and large
numbers of synapses allows closure
pairwise independence implies vanishing correlation
binary neuron sufficiently simple for mean-field analysis
E-I network:

balanced state emerges in inhibition-dominated regime
mean input to single cell cancels ⇒ fluctuations � threshold
irregular activity like in-vivo
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Correlation by a single connection

definition of correlation:
coactivity minus expectation assuming independence

cij = 〈ninj〉 − 〈ni〉〈nj〉
= 〈δniδnj〉

≡ cofluctuation around expectation δni = ni − 〈ni〉
simplest case: effect of a single synaptic connection
activities ni and nj are correlated due to connection j → i ,
cij > 0
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Conservation of probability

all states for a network of 2 neurons
n = (n1, n2) ∈ {0, 1} × {0, 1}
the network is always in a state ⇒ conservation of probability
at each point in time at most one neuron makes a transition
⇒ no diagonal arrows
the loss of probability in the original state is the gain in the
target state
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Conservation of probability

notation: ni+ = (n1, n2, . . . , 1︸︷︷︸
pos i

, . . . , nN) ni− similar

dp(n)

dt =
1
τ

N∑
i=1

(2ni−1) (p(ni−) Fi (ni−)− p(ni+) (1− Fi (ni+)))

(2ni − 1) = 1 if ni = 1,−1 else indicates direction of flux
entering or exiting, respectively
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Mean activity
multiply previous eq. by nk and sum over all possible states n

0 =
∑
n

nk

N∑
i=1

(2ni − 1)︸ ︷︷ ︸
1 if ni =1,−1 else

(p(ni−)Fi (ni−)− p(ni+)(1− Fi (ni+)))

=
∑
n\nk

p(nk−)Fk(nk−)− p(nk+)(1− Fk(nk+))

rearrange

〈nk〉 =
∑
n

nkp(n) =
∑
n\nk

p(nk+)

=
∑
n\nk

p(nk−)Fk(nk−) + p(nk+)Fk(nk+)

= 〈Fk(n)〉

mean activity of k = mean of gain function mk = 〈nk〉 = 〈Fk(n)〉
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Equation for correlations

same approach as for the mean: multiply equation of equilibrium
probability flux by nknl , sum over all states

0 =
∑
n

nknl

N∑
i=1

(2ni − 1)︸ ︷︷ ︸
1 if ni =1,−1 else

(p(ni−)Fi (ni−)− p(ni+)(1− Fi (ni+)))

only two terms remain, where i = k or i = l , rearranging yields

ckl =
1
2 〈Fk(n)δnl〉+

1
2 〈Fl (n)δnk〉

with δni = ni − 〈ni〉

correlations are caused by fluctuations δnl affecting the
activation function of neuron k and vice versa
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Correlation by a single connection

neuron post receives input from network
in addition input from another, independent neuron pre
correlation due to the single connection pre→ post
cpost,pre = 1

2〈Fpost(n)δnpre〉
second term 〈Fpre(n)δnpost〉 vanishes, because post has no
effect on pre
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Correlation by a single connection
input from network to pre in mean-field approximation is a
Gaussian noise x ∼ N (µ, σ2)
total input to neuron post is hpost = x + Jnpre

cpost,pre =
1
2〈H(x + Jnpre)δnpre〉x ,npre

=
1
2〈H(x + J)npreδnpre + H(x)(1− npre)δnpre〉x ,npre

=
1
2〈H(x + J)− H(x)〉x 〈npreδnpre〉npre

fluctuations of pre neuron drive correlations
c ∝ autocovariance 〈npreδnpre〉 = 〈δnpreδnpre〉 = apre

Ginzburg & Sompolinsky (1994)
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Susceptibility
J has small impact compared to ’noise’ from network
x ∼ N (µ, σ)

Taylor expansion in J

〈H(x + J)− H(x)〉x = S(µ, σ)J + O(ε2)

S(µ, σ) =
∂

∂ε

∣∣∣∣
ε=0
〈H(x + ε)− H(x)〉x

=
1√
2πσ

e−
µ2

2σ2

susceptibility S quantifies to linear order sensitivity post’s
activity to small fluctuation in input
susceptibility S(µ, σ) depends on neuron properties and on
network state (µ, σ)
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Correlation by a single connection:
comparison to simulation

−50 0 50

time lag t(ms)

0.000

0.001

cpost,pre =
J
2S(µ, σ) apre

apre = 〈npre〉(1− 〈npre〉)

apre strength of pre fluctuation
J
2 S(µ, σ) transmission of fluctuation from input to output
theory (red dot) and simulation (black curve) agree

Ginzburg & Sompolinsky 1994, simulated with NEST, www.nest-initiative.org
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Correlations in a recurrent network

external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−

clk =
1
2〈Fl (n)δnk〉+

1
2〈Fk(n)δnl〉

complicated, because in 〈Fk(n)δnl〉 neuron l might be
correlated with any other neuron in n projecting to target k
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Correlations in a recurrent network

〈Fl (n)δnk〉 = 〈H(hl\nj + Jlj)njδnk + H(hl\nj )(1− nj)δnk〉
= 〈[H(hl\nj + Jlj)− H(hl\nj )] njδnk〉
+ 〈H(hl\nj )δnk〉

first term: repeating for i 6= j → third order correlation,
neglected
〈[H(x + Jlj)− H(x)]〉x 〈njδnk〉n ' S(µ, σ)Jljcjk

second term: independent of j ; j was chosen arbitrarily, so

clk =
S(µ, σ)

2
∑

j
(Jkjcjl + Jljcjk)

cii = ai
autocovariances ai drive cross-covariances clkJuly 21st, Decatur, Atlanta Moritz Helias slide 39



Population-averaged correlations
often the correlation averaged over many pairs is interesting
introduce avg. correlation cee = 1

N2
e

∑
k 6=l∈E ckl

(other 3 pairings analogous)
inserting ckl = S(µ,σ)

2
∑

i (Jkicil + Jlicik) we obtain

cee =
K J S(µ, σ)

2

( 2
N a + 2cee − 2γgcie

)
cii =

K J S(µ, σ)

2

(
− 2

N ga − 2γgcii + 2cei

)
cei = cie =

1
2 (cee + cii )

a = (1− 〈n〉)〈n〉

can be solved by elementary methods
Ginzburg & Somplolinsky 1994
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Population-averaged correlations:
comparison to simulation

−100 0 100

time lag t(ms)

0.0

0.2

co
rr

el
at

io
n
c

(1
0
−

3
)

binary neuron implemented
in NEST www.nest-initiative.org

implementation uses
exponentially distributed
update intervals

theoretical prediction (red dot) agrees with simulation
strength of correlations depends on type of neuron
(black: cee , gray cii , light gray cei)
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The balanced condition revisited

external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−

three populations α ∈ {E , I,X} of
N neurons each
finite, external population
random connection propbability p
shared external sources

balanced condition fixes population averaged activities mα

effective coupling from pop β to neuron in α is

jαβ = KJαβ K = pN

mean input to neuron of population α must approx. cancel

hα =
∑
β

jαβmβ ' 0

van Vreeswijk & Sompolinsky (1996), Amit & Brunel (1997), Renart et al. (2010)
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Fast tracking – balance on a fast time scale

0 250

time t(ms)

0.08

0.10

0.12
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n
E
,I
,X

nI
nE
nX

0 250

time t(ms)

−10

0

10

in
pu

th
E

total hE
jEEnE

jEXnX

jEXnX

cancellation of mean input approx determines rates
observation: cancelation on input side also holds on fast time
scale

δhα =
∑
β

jαβδnβ ' 0

imposes relation between population fluctuations
δnα = 1

N
∑

i∈α ni −mα Renart et al. (2010)
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Population fluctuations – population averaged
correlations

population fluctuations δnα = 1
N
∑

i∈α δni

〈δnβδnγ〉 =
1

N2

∑
i∈β,j∈γ

〈δniδnj〉

= δβγ
1

N2

∑
i∈β
〈δn2i 〉+

1
N2

∑
i∈β,j∈γ,i 6=j

〈δniδnj〉

= δβγ
1
N aβ + cβγ

are linked to average autocovariance aβ and pairwise averaged
cross covariance cβγ
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Suppression of input correlation in balanced state

observation: balance condition also holds approximately on
fast time scale, δh ' 0

0 ' 〈δh2α〉 =
∑
βγ

jαβ jαγ〈δnβδnγ〉

with previous result 〈δnβδnγ〉 = δβγ
1
N aβ + cβγ

and jαβ = JαβK = JαβpN

0 ' 〈δh2α〉 = pK
∑
β

J2
αβaβ + K 2∑

βγ

JαβJαγcβγ
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Suppression of input correlation in balanced state

−25 0 25

time lag t(ms)

−0.5

0.0

0.5

in
pu

tc
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.

ccorr

cshared

0 'pK
∑
β

J2
αβaβ + K 2∑

βγ

JαβJαγcβγ

=cshared + ccorr.
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Does fast tracking determine correlations?
cancellation δhα ' 0 relates population fluctuations δnα

0 ' δhα =
∑
β jαβδnβ define matrix j =

(
jEE jEI
jIE jII

)
(
δnE
δnI

)
= −j−1

(
jEX
jIX

)
δnX =

(
AE
AI

)
δnX

0 250

time t(ms)

0.08

0.10

0.12

po
p

ac
t.
n
E
,I
,X

nI
nE
nX

0 250

time t(ms)

−2

0

2

po
p.

fl.
δn

(1
0
−

2
)

δnE

AEδnX

Hertz et al 2010, Renart et al. 2010
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Does fast tracking determine correlations?
apply connection between population fluctuation and
auto-/crosscovariance

〈δnβδnγ〉 = δβγ
1
N aβ + cβγ 〈δn2X 〉 =

aX
N

use fast tracking condition

(
δnE
δnI

)
=

(
AE
AI

)
δnX

cαα = A2
α

aX
N −

aα
N

cαβ = AαAβ
aX
N

−25 0 25

time lag t(ms)

0

1

co
v.
c

(1
0
−

5
)

cEE
cEI
cII

Renart et al. 2010
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Two components of correlations:
intrinsic fluctuations and external drive

2cαβ = S

 ∑
γ∈{E ,I,X}

(jαγcγβ + jβγcγα) +
1
N jαβaβ +

1
N jβαaα


Ginzburg & Sompolinsky (1994)

A

cEE
cEI
cII

 = B
(

aE
NaI
N

)
+ C

(
cEX
cIX

)

D
(

cEX
cIX

)
= E aX

N

2 source terms drive covariance: external aX and intrinsic
fluctuations aE , aI
covariance has scale 1/N compared to autocovariance
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Cancellation condition constrains correlations
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Summary

correlations can be understood analytically in binary networks
mean field solution determines ’working point’ (rates)
fluctuations around working point accounted for to linear order
recurrent equation relating auto- and crosscorrelations

balance in networks ≡ suppression on input correlation
constrains, but does not determine correlation structure
correlation structure obeys cancelation condition
correlations driven by two ’sources’

autocovariance of neurons within the network
autocovariance of external drive
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Further reading

I Ginzburg, H Sompolinsky (1994)
Theory of correlations in stochastic neural networks
Phys Rev E 50 (4)
Amit & Brunel (1997)
Model of global spontaneous sctivity and local structured activity during delay periods in the cerebral
cortex, Cerebral Cortex 7: 237–252
C A van Vreeswijk and H Sompolinsky (1998)
Chaotic Balanced State in a Model of Cortical Circuits.
Neural Comp. 10:1321-1372.
M A Buice, J D Cowan, C C Chow (2010)
Systematic fluctuation expansion for neural network activity equations
Neural Comput 22, 377–426
J Hertz, Cross-Correlations in High-Conductance States of a Model Cortical Network, Neural Computation
22, 427–447
A Renart, J De La Rocha, L Hollander, N Parga, A Reyes, KD Harris (2010)
The Asynchronous state in cortical circuits
Science 327, 587 Science 2010
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How to treat correlations in spiking networks?

determine state of network in mean-field theory
linearization of neural response around working point
map to equivalent linear system
average

either actitivity over populations
or pairwise correlations over equivalent pairs

solve resulting (recurrent) equation in frequency domain
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Leaky integrate-and-fire dynamics

τm
dVi (t)

dt + Vi (t) = RIi (t)

R
(
τs

dIi (t)

dt + Ii (t)

)
= τm

N∑
j=1

Jijsj(t − d) ≡ bi (t)

ifV > Vθ then V ← Vr , spike

Fourcaud & Brunel (2002)

neuron i spikes at time points tk
i , “spike train”:

si (t) =
∑

k
δ(t − tk

i )

we aim to understand correlations between spike trains
cij(τ) = 〈δsi (t + τ)δsj(t)〉
δsi (t) = si (t)− 〈si〉
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Homogeneous random network

external
drive

excitatory
population
(I&F, current syn.)

inhibitory
population
(I&F, current syn.)

+

+

+ −

+

−

N exc., γN inh. neurons
identical internal dynamics
random connectivity, K exc
inputs, γK inh inputs
amplitude J of exc synapse,
−gJ of inh synapse

identical statistics of summed input to each neuron
suggests equal rate r of all neurons

bi (t) = τm
∑

j
Jijsj(t)

= τmJ
∑

j∈exc. srcs︸ ︷︷ ︸
K

sj(t)− τmgJ
∑

k∈inh. srcs︸ ︷︷ ︸
γK

sk(t) + τmJsext.(t)

Amit & Brunel 1997, Brunel & Hakim 1999, Brunel 2000
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Mean-field solution: closure assumption

population average in network ν(t) = 1
N(1+γ)

∑
i si (t)

homogeneity: all neurons sj(t) have same rate ν(t)

assume vanishing correlation:
sum of K Poisson processes with rate ν = Poisson, rate Kν
mean Kν = variance Kν
diffusion approximation J � θ

b(t) ' µ+ σξ(t)

with
µ = τmJK (1− γg) ν + Jνext.

σ = J
√
τmK (1 + γg2) ν + τmνext.

ξ(t) = unit var. Gaussian white noise
0 20 40

ν(Hz)

0

10

µ
,σ

(m
V

)

µ

σ

Amit & Brunel 1997, Brunel & Hakim 1999, Brunel 2000
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Mean-field solution: self-consistent rate

in diffusion limit, firing rate of LIF neuron can be calculated

ν−1 = τr + τm
√
π

∫ yθ

yr
f (y) dy

with

f (y) = ey2
(1 + erf(y))

yθ,r =
{Vθ,Vr} − µ

σ
+
α

2

√
τs
τm

0 20 40

ν(Hz)

0

20

40

ν
(H

z)
ν = φ(µ(ν), σ2(ν))

Siegert 1954, Brunel 2000, Brunel Fourcaud 2003, Moreno Bote et al. 2006
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Phase diagram
several states exist
phase diagram can be
obtained by perturbative
methods + stability analysis
here focus on asynchronous
irregular activity similar to
in-vivo

Brunel 2000
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Linearization
spike train: functional si (t) = G i

t(s) depends on past spikes
s(t ′), t ′ < t

G i
t(s) = G i

t(s\sj) +

∫ t

−∞

∂G i
t(s)

∂sj(t ′)
sj(t ′) dt ′

with the functional derivative defined as
∂G i

t(s)
∂sj(t ′)

= lim
ε→0

1
ε

(
G i

t(s + εejδ(◦ − t ′)− G i
t(s)

)
≡ hij(s\sj , t, t ′)

small perturbation by single
spike of neuron j
response si (t) to first order
linear in perturbation

Pernice et al. 2011, 2012, Trousdale et al. 2012, Tetzlaff et al. 2012
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Relation to spike-triggered average

Trousdale et al.

2012
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Linearized convolution equation for correlations
for t > u

cik(t, u) = 〈si (t) δsk(u)〉 = 〈G i
t(s) δsk(u)〉

= 〈G i
t(s\sj) δsk(u)〉

+

∫ t

−∞
〈hij(s\sj , t, t ′) sj(t ′)δsk(u)〉 dt ′

first term: functional independent of sj

second term: expansion for sl causes third order terms slsjsk
neglected here → assumption of independence of hij and sj , sk

choice j was arbitrary, so to linear order

cik(t, u) '
∑

j

∫ t

−∞
〈hij(s\sj , t, t ′)〉 cjk(t ′, u) dt ′
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Properties of the response kernel
average over remaining inputs s\sj :
replace by equivalent Gaussian noise 〈〉s\sj → 〈〉x∼N (µ,σ)

hij(t, t ′) ' lim
ε→0

1
ε

〈
G i

t(x + εJijδ(◦ − t ′))− G i
t(x)

〉
x

linear approximation of neuron j ′s influence on neuron i
→ impulse response
stationarity: kernel only depends on time difference hij(t − t ′)

step response wij(t) =
∫∞
−∞ hij(t ′) θ(t − t ′) dt ′ =

∫ t
0 hij(t ′) dt ′

dc susceptibility wij(∞) ≡ change of equilibrium rate due to step in
input j after long time

H(∞) = ν(µ+ Jij , σ + J2
ij )− ν(µ, σ)

Helias et al. (2010), Tetzlaff et al. (2012)
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Interpretation of the kernel

dc susceptibility wij ≡
Hij(∞) ≡ change of equi-
librium rate due to step ε
in input j after long time

wij = limε→0
ν(µ+εJij ,σ2+εJ2

ij )−ν(µ,σ2)

ε

linearize ν(µ, σ2) for small ε

wij =
√
π(τmνi )

2 Jij
σi

(
f (yθ)(1 +

yθ
2σi

Jij)− f (yr )(1 +
yr
2σi

Jij)

)
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Equivalent linear dynamics
spiking dynamics:

〈δsi〉 = 0

cij(τ) = 〈δsi (t + τ)δsj〉 =

{∑
k hik ∗ (ckj + δjkaj)(τ) i 6= j

ai (τ) = δ(τ)νi i = j

continuous, linear dynamics equivalent up to second moment:

yi (t) =
∑

k
(hik ∗ yk)(t) + xi (t)

〈xi (t)〉 = 0 〈xi (t + τ)xj(t)〉 = δ(τ)δijνi

cij(τ) = 〈yi (t + τ)yj(t)〉
fulfills same convolution equation
Lindner et al. 2005, Pernice et al. 2012, Trousdale et. al 2012, Tetzlaff et al. 2012
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Population averaged system

avg.⇒
N-dim 2-dim

y = Wh ∗ y + x
(

yE
yI

)
= Kw

(
1 −γg
1 −γg

)
h ∗

(
yE
yI

)
+

(
xE
xI

)

introduce population averaged activity

yE = 1
N
∑

i∈E yi yI = 1
γN
∑

i∈I yi

effective coupling: number of synapses × weight
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Schur transformation exposes negative feedback
Y(ω) = WH(ω)Y(ω) + X(ω)(

YE
YI

)
= 1√

2

(
1
1

)
Y+ + 1√

2

(
1
−1

)
Y−

Schur basis ≡ orthonormalized eigenbasis

Schur⇒

W̃ = Kw
(
1 −γg
1 −γg

)
Ŵ =

(
L M
0 0

)
L = Kw(1− γg)
M = Kw(1 + γg)

Y− = HX− Y+ =
M

1− LH HX− + X+
Tetzlaff et al. 2012
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Negative feedback cancels fluctuations

Tetzlaff et al. 2012

fluctuation suppression has same cause in E-I as in I networks
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Small fluctuations ↔ small correlations
small population fluctuations of population α

〈y2
α〉 =

1
N2
α

∑
i ,j
〈yiyj〉

=
1

Nα
aα + cαα

imply small pairwise averaged correlations cαα
at fixed autocorrelation aα

aα =
1

Nα

∑
i
〈yiyi〉

cαα =
1

N2
α

∑
i 6=j
〈yiyj〉

Tetzlaff et al. (2012)
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Pairwise correlations

cij(τ) =
∑
k 6=j

wikh ∗ (ckj + δkjνjδ(◦))

average correlation between excitatory pairs of neurons:

cEE(τ) = 1
N2
∑

i 6=j∈E cij(τ) cII, cEI, cIE . . .

c =

(
cEE cEI
cIE cII

)
= Kw

(
1 −γg
1 −γg

)
︸ ︷︷ ︸

W̃

h ∗ c + r Kw
N

(
1 −g
1 −g

)
h ∗ δ

= W̃h ∗

c +
ν

N

(
1 0
0 1/γ

)
︸ ︷︷ ︸

≡D

δ


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Averaged correlations ↔ correlation of average
c = W̃h ∗ (c + Dδ)︸ ︷︷ ︸

≡c̄

introduce c̄ = c + Dδ

c̄ equivalent to population fluctuations

c̄EE(τ) = cEE(τ)︸ ︷︷ ︸
i 6=j

+
ν

N δ(τ)︸ ︷︷ ︸
i=j

aE(τ) ' ν

N δ(τ)

' 1
N2

∑
i ,j∈E
〈yi (t + τ)yj(t)〉 = 〈yE(t + τ)yE(t)〉

Y(ω) = W̃H(ω)Y(ω) +
√
DX(ω)

= P(ω)
√
DX (ω) with P(ω) = (1− H(ω)W̃)−1

C̄(ω) = 〈Y(ω)YT (−ω)〉 = P(ω) D PT (−ω)

Hawkes (1971), Pernice et al. (2011, 2012), Trousdale et al. (2012), Tetzlaff et al. (2012)

July 21st, Decatur, Atlanta Moritz Helias slide 71



Structure of correlations
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Tetzlaff et al. (2012)

CEE/II =
Cshared

(1− L)2
+

2KwA
1− L

{ 1
NE

for EE
−γg
NI

for II

CEI =
1
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(
1
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+
γg2

NI

)
A.
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What about infinite brains?
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scaling: w ∝ 1/N ∝ 1/K
adjust external noise to maintain working point (fluctuations)
negative compound feedback: Kw(1− γg) ≡ L = const.
asymmetry remains in limit of infinitely large networks

Helias et al. (submitted)
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Cancelation of input correlation

Cinput = Cshared + Ccorr

Cshared = pcKw2(1 + γg2)A
Ccorr = (Kw)2(CEE − 2γgCEI + (γg)2CII)
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Cshared > 0,Ccorr < 0 partially cancel
EI network: CEE > CEI > CII ⇒ Ccorr < 0
I network: CII < 0, same cancelation

Tetzlaff et al. 2012
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Correlations in structured networks

C(ω) = 〈Y(ω)Y(−ω)〉 = P(ω) D PT (−ω)

propagator P(ω) = [1− H(ω)W︸ ︷︷ ︸
G(ω)

]−1 can be expanded

iff absolute value of spectrum is bounded by unity

Wvi = λivi iff |H(ω)λi | < 1 ∀ i , ω

→ P(ω) =
∞∑

n=0
G(ω)n

C(ω) =
∑
n,m

Gn(ω) D (GT )m(−ω)

Pernice et al. (2011), (2012), Trousdale et al. (2012)
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Correlations in structured networks

for nilpotent coupling matrix G3 = 0 P = 1 + G + G2

C = DGT + GD︸ ︷︷ ︸
order I

+GDGT + D(GT )2 + G2D︸ ︷︷ ︸
order II

+ GD(GT )2 + G2DGT︸ ︷︷ ︸
order III

Trousdale et al. 2012
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Contribution of first order term in random networks

covariance between pairs fluctuates around population mean
mostly due to first order terms GD,DGT (direct connections)

Trousdale et al. 2012
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Delays, oscillations, temporal shape . . .
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Helias et al.

(submitted)

investigating frequency dependence of C(ω) explains
delayed synaptic coupling → fast global oscillations Brunel 2000

temporal shape of correlation functions
scaling invariant properties of network dynamics
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Summary

qualitatively similar approach as for binary neurons:
mean-field solution, linearization, Fourier transform
equivalence of linearized LIF, linear Poisson, linear rate
equations
correlations smaller than expected by shared input
suppression of correlations ≡ suppression of population
fluctuations
negative feedback is underlying reason
y same phenomenon in E-I and in I networks
obserable as cancellation of input correlations
structured networks: expansion of propagator yields intuition
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