Theory of correlation transfer and correlation structure Part II: recurrent networks

CNS*2012 tutorial

July 21st, Decatur, Atlanta | Moritz Helias INM-6 Computational and Systems Neuroscience, Jülich, Germany

Why study correlations in the brain?

- variable response of cortical neurons to repeated stimuli
- neurons share variability, causing correlations
- typical count correlation in primates 0.01 0.25
 Cohen & Kohn (2011)
- affects the information in the population signal

Zohary et al. (1994); Shadlen & Newsome (1998)

correlations are modulated by attention

Cohen & Maunsell (2009)

correlations reflect behavior

Kilavik et al. (2009)

correlation analysis has been used to infer connectivity

Aertsen (1989), Alonso (1998)

synaptic plasticity is sensitive to correlations

Bi & Poo (1998)

Outline

- in vivo correlations & random networks
- theory of correlations in binary random networks
 - binary neuron model
 - mean-field solution
 - balanced state
 - self-consistency equation for correlations
 - correlation suppression
- theory of correlations in spiking networks
 - leaky integrate-and-fire model
 - linear response theory
 - population averages
 - exposing negative feedback by Schur transform
 - fluctuation suppression \leftrightarrow decorrelation
 - structure of correlations

Local cortical network

- $N\simeq 10^5~{
 m neurons}~/~{
 m mm}^3$
- $K \simeq 10^4$ synapses / neuron
- connection prob. $\simeq 10$ percent
- layered structure
- layer-specific connectivity
- different cell types
- most importantly: exc. and inh. cells
- different morphologies

100µm

abstraction of neurons as points connected by synapses

July 21st, Decatur, Atlanta

Asynchronous firing

 noise correlations r_{sc} smaller than expected given the amount of common input (p_c = 0.1) and despite signal correlations r_{signal}

• trial averaged response
$$m = \langle x \rangle_{\text{trials}}$$

- count (noise) correlation $r_{\rm sc} = \langle \langle z_1 z_2 \rangle_{\rm trials} \rangle_{\Theta}$ with $z = \frac{x-m}{\sqrt{\langle (x-m)^2 \rangle_{\rm trials}}}$
- signal corelation $r_{\text{signal}} = \langle y_1 y_2 \rangle_{\Theta}$ with $y = \frac{m-n}{\sqrt{\langle (m-n)^2 \rangle_{\Theta}}}$ and $n = \langle m \rangle_{\Theta}$

Ecker A, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010): Science 327: 584

July 21st, Decatur, Atlanta

Small correlations

- correlations smaller than expected from common input
- connectivity $p_c = 0.1 \rightarrow 10$ percent common presynaptic partners
- correlations differ for ee and for ii pairs (even if symmetric connectivity assumed in simulations)
- naive picture suggests c = c_{ff}

Structure of correlation between input currents

- measurement of excitatory and inhibitory currents separately
- positive contributions by ee and ii correlations
- biphasic contribution by ei correlation

Okun M and Lampl I, Nature neuroscience 11(5) (2008)

July 21st, Decatur, Atlanta

Aim: Understand correlations in recurrent random networks

- N excitatory and γN inhibitory neurons
- neurons all have same internal dynamics
- random connectivity with connection probability p = K/N
- each exc. synapse has strength J, inh. has strength -gJ
- well studied model of local cortical network

van Vreeswijk & Sompolinsky 1996, Amit & Brunel 1997, Brunel 2000

July 21st, Decatur, Atlanta

Why study E-I networks?

- activity of neurons in vivo: irregular (~ Poisson), low rate
 ↔ broad inter-spike-interval distribution
- membrane potential of neurons has strong fluctuations
- however, neurons under current injections show regular activity of single cells
- naive view of a network
 - superposition of many synaptic inputs \Rightarrow fluctuations vanish
- E-I networks achieve irregular activity
 - membrane potential close to threshold, fluctuations drive firing
- simplest network model that explains emergence of balanced regime in a robust manner

Description of networks

Random network \Rightarrow Erdös-Renyi weight matrix $\mathbf{J} = \{J_{ij}\}$, fixed indegree

(van Vreeswijk & Sompolinsky 1996, 1998, Brunel 2000)

July 21st, Decatur, Atlanta

July 21st, Decatur, Atlanta

Binary neuron model

• binary state of neuron $n_i \in \{0, 1\}$

- classical model used in neuroscience to
 - explain irregular, low activity state Vreeswijk & Sompolinsky 1996, 1998
 - explain pairwise correlations Ginzburg & Sompolinsky 1994
 - develop theory for higher order correlations Buice et al. 2009
 - show active decorrelation in recurrent networks Hertz et. al., 2010, Renart et al. 2010

Binary neuron model

- $\mathbf{n} = (n_1, n_2, \dots, n_N) \in \{0, 1\}^N$ state of whole network
- summed input to neuron i (local field) $h_i = \sum_k J_{ik} n_k + h_{\mathrm{ext}}$
- external input $h_{\rm ext}$ from other areas
- non-linearity $H(h_i) = \begin{cases} 1 & \text{for } h_i > 0 \\ 0 & \text{else} \end{cases}$ controls transition

Binary neuron model

stochastic update with probability dt/τ in interval dt

"Poisson jump process" Feller II (1965), Hopfield (1982)

- prob. of up-state $F_i(\mathbf{n}) = H(h_i)$
- prob. of down-state $1 F_i(\mathbf{n})$
- implementations of asynchronous update
 - neuron chosen at exponential intervals of mean duration au
 - classical: dicretized time, system's state propagated by randomly selecting next neuron for update

state n_i of neuron

500time t ms

interval between updates is identified with dt

 \rightarrow interpretation $\tau = dtN$

$$\frac{1}{\frac{1}{\tau}F_{i}(\mathbf{n})} \int \frac{1}{\frac{1}{\tau}(1-F_{i}(\mathbf{n}))} \underbrace{\frac{1}{\tilde{\tau}}}_{0} \underbrace{\frac{1}{\tilde$$

Binary variables

- time point of update chosen randomly
- state $n_i \in \{0, 1\}$ is a random variable
- neuron *i* assumes state n_i with probability $p_i(n_i)$
- expectation value () over initial conditions and stochastic update time points
- mean

$$m_i = \langle n_i \rangle = p_i(0) \ 0 + p_i(1) \ 1 = p_i(1)$$

variance

$$a_i = \langle \underbrace{n_i^2}_{\equiv n_i}
angle - m_i^2 = m_i - m_i^2 = m_i(1-m_i)$$

variance uniquely determined by the mean

July 21st, Decatur, Atlanta

Mean-field solution

- enables to determine global features, e.g. firing rate
- typically assumes vanishing correlation
- starting point to study correlations

Effective rate dynamics

 occupation of states determined by conservation equation master equation of probability p_i(n_i) for neuron i in state n_i

$$\frac{d}{dt}p_i(1) = \underbrace{-\frac{1}{\tau}(1-F_i(\mathbf{n}))p_i(1)}_{\text{was up, leaves up-state}} + \underbrace{\frac{1}{\tau}F_i(\mathbf{n})p_i(0)}_{\text{was down, enters up-state}}$$

$$p_i(0) + p_i(1) = 1$$

$$\tau \frac{d}{dt}p_i(1) = -p_i(1) + F_i(\mathbf{n})$$

• expected state $m_i = p_i(1) \ 1 + p_i(0) \ 0 = p(1)$ fulfills same differential equation

$$\tau \frac{d}{dt}m_i = -m_i + F_i(\mathbf{n})$$

Buice et al. (2009)

July 21st, Decatur, Atlanta

Homogeneous random network

- assume single population of neurons
- homogeneous network:
 - each neuron has *K* inputs drawn randomly
 - synaptic weight $J_{ik} = J$ each
 - input statistics is identical for each neuron
- $\tau \frac{d}{dt}m_i = -m_i + F_i(\mathbf{n})$ depends on (possibly) all other \mathbf{n}
- idea of mean-field theory: express the statistics of **n** (approximately) by the population expectation value $m = \frac{1}{N} \sum_{i=1}^{N} m_i$

Mean-field dynamics

- mean activity $m = \frac{1}{N} \sum_{i=1}^{N} m_i$
- three assumptions:
 - n_k , n_l pairwise independent (1)
 - *large number K* of inputs per neuron (2)
 - homogeneity of mean activity $\langle n_i \rangle = m$ (3)
- (1) \Rightarrow correlations vanish 0 = $\langle n_i n_j \rangle \langle n_i \rangle \langle n_j \rangle$
- (1) k of K inputs are active with binomial prob. B(K, m, k)

• (2)
$$K \gg 1 \Rightarrow kJ \sim \mathcal{N}(\mu, \sigma)$$

- (3) with $\mu = JKm$ $\sigma^2 = J^2Km(1-m)$
- assumptions allow *closure* of the problem: express distribution of **n** by mean value *m* alone

van Vreeswijk & Sompolinsky (1998)

July 21st, Decatur, Atlanta

Mean-field dynamics

- study gain function F_i(h_i) of single neuron i
- $h_i = kJ \sim \mathcal{N}(\mu, \sigma)$

with $\mu = JKm$ and $\sigma^2 = J^2Km(1-m)$

Mean-field dynamics

$$\tau \frac{dm}{dt} + m = \frac{1}{2} \operatorname{erfc} \left(-\frac{\mu(m) + h_{\text{ext}}}{\sqrt{2}\sigma(m)} \right) \equiv \Phi(m, h_{\text{ext}})$$
$$\mu(m) = JKm$$
$$\sigma^{2}(m) = J^{2}Km(1-m)$$

stationarity $\frac{dm}{dt} = 0$ leads to **self-consistency equation** $m = \Phi(m, h_{\text{ext}})$

July 21st, Decatur, Atlanta

Fixed-point rate

$$m = \Phi(m, h_{\text{ext}})$$

$$\equiv \frac{1}{2} \operatorname{erfc} \left(-\frac{\mu(m) + h_{\text{ext}}}{\sqrt{2}\sigma(m)} \right)$$

$$\stackrel{(i)}{=} 0.5$$

• mean
$$\mu = JKm \propto K$$

fluctuations $\sigma = |J|\sqrt{Km(1-m)} \propto \sqrt{K}$

- large K: function Φ has sharp transition at $\mu(m) + h_{\text{ext}} \simeq 0$
- \Rightarrow solution 0 < m < 1 exists near transition

mean input needs to cancel approximately

$$\mu(m) = KJm \simeq -h_{
m ext}$$

van Vreeswijk & Sompolinsky 1996, 1998 July 21st, Decatur, Atlanta

Balanced network

- two subpopulations
 N exc neurons
 - γN inh neurons
- random connectivity
 J_{EE}, J_{IE} exc synpases
 J_{EI}, J_{II} inh synapses
- fixed number of incoming synapses per neuron
 K exc synpases
 γK inh synapses

Mean-field equations

- population averaged activity $m_x = \frac{1}{N_x} \sum_{i \in x} m_i$ for $x \in \{E, I\}$
- derivation can be generalized in straight forward manner
- in general different mean and fluctuations in input to *E* and *I* set of two equation to be solved simultaneously for $x \in \{E, I\}$:

$$\tau \frac{dm_x}{dt} = -m_x + \Phi_x(m_E, m_I)$$

$$\Phi_x(m_E, m_I) = \frac{1}{2} \operatorname{erfc} \left(-\frac{\mu_x(m_E, m_I) + h_{ext}}{\sqrt{2}\sigma_x(m_E, m_I)} \right)$$

$$\mu_x = K(J_{xE}m_E - \gamma J_{xI}m_I)$$

$$\sigma_x^2 = K(J_{xE}^2m_E(1 - m_E) + \gamma J_{xI}^2m_I(1 - m_I))$$

July 21st, Decatur, Atlanta

Balance condition

equilibrium rate

$$m_x = \Phi_x(m_E, m_I) = \frac{1}{2} \operatorname{erfc} \left(-\frac{\mu_x(m_E, m_I) + h_{ext}}{\sqrt{2}\sigma_x(m_E, m_I)} \right)$$

•
$$\mu_x \propto K$$
, $\sigma_x \propto \sqrt{K}$

• $K \gg 1$:

solution with non-saturating rate $0 < m_E, m_I < 1$ \Rightarrow approximate balance $\mu_x + h_{\rm ext} \simeq O(\sqrt{K})$

approximate solution:

$$\begin{array}{rcl} \mathcal{K}(J_{EE}m_E + \gamma J_{EI}m_I) + h_{\mathrm{ext}} &\simeq & \mathcal{O}(\sqrt{K}) \\ \mathcal{K}(J_{IE}m_E + \gamma J_{II}m_I) + h_{\mathrm{ext}} &\simeq & \mathcal{O}(\sqrt{K}) \end{array}$$

July 21st, Decatur, Atlanta

Balance condition

- mean contributions of E and I to synaptic inputs \sim cancel
- fluctuations in input large compared to threshold
- \Rightarrow irregualar activity of single cell

Balance condition

- mean contributions of E and I to synaptic inputs \sim cancel
- fluctuations in input large compared to threshold
- \Rightarrow irregualar activity of single cell

$$h_i = \sum_k J_{ik} n_k + h_{\text{ext}}$$

active, if $h_i > 0$

Summary mean field activity

- Erdös-Renyi networks: simplest model of local connectivity
- assumptions of homogeneity, indepdendence, and large numbers of synapses allows closure
- pairwise independence implies vanishing correlation
- binary neuron sufficiently simple for mean-field analysis
- E-I network:
 - balanced state emerges in inhibition-dominated regime
 - mean input to single cell cancels \Rightarrow fluctuations \gg threshold
 - irregular activity like in-vivo

July 21st, Decatur, Atlanta

Correlation by a single connection

 definition of correlation: coactivity minus expectation assuming independence

$$c_{ij} = \langle n_i n_j \rangle - \langle n_i \rangle \langle n_j \rangle$$
$$= \langle \delta n_i \delta n_j \rangle$$

- \equiv cofluctuation around expectation $\delta n_i = n_i \langle n_i \rangle$
- simplest case: effect of a single synaptic connection
- activities n_i and n_j are correlated due to connection $j \rightarrow i$, $c_{ij} > 0$

Conservation of probability

- all states for a network of 2 neurons $\mathbf{n} = (n_1, n_2) \in \{0, 1\} \times \{0, 1\}$
- the network is always in a state \Rightarrow conservation of probability
- at each point in time at most one neuron makes a transition
 ⇒ no diagonal arrows
- the loss of probability in the original state is the gain in the target state

$$1 - F_{1}(0,1) \xrightarrow{(0,1)} F_{1}(0,0) \xrightarrow{(1,1)} F_{1}(0,0) \xrightarrow{(1,0)} F_{1}(0,0)$$

Conservation of probability

$$\begin{array}{c} (0,1) \\ (0,1) \\ \hline F_1(0,1) \\ (0,0) \\ \hline F_1(0,0) \\ \hline (1,0) \\ \hline (1,0) \\ \hline \end{array}$$

• notation: $\mathbf{n}_{i+} = (n_1, n_2, \dots, \underbrace{1}_{\text{pos } i}, \dots, n_N)$ \mathbf{n}_{i-} similar

$$\frac{dp(\mathbf{n})}{dt} = \frac{1}{\tau} \sum_{i=1}^{N} (2n_i - 1) \left(p(\mathbf{n}_{i-}) F_i(\mathbf{n}_{i-}) - p(\mathbf{n}_{i+}) \left(1 - F_i(\mathbf{n}_{i+}) \right) \right)$$

(2n_i - 1) = 1 if n_i = 1, -1 else indicates direction of flux entering or exiting, respectively

July 21st, Decatur, Atlanta

Mean activity

multiply previous eq. by n_k and sum over all possible states **n**

$$0 = \sum_{\mathbf{n}} n_k \sum_{i=1}^{N} \underbrace{(2n_i - 1)}_{1 \text{ if } n_i = 1, -1 \text{ else}} (p(\mathbf{n}_{i-})F_i(\mathbf{n}_{i-}) - p(\mathbf{n}_{i+})(1 - F_i(\mathbf{n}_{i+})))$$

$$= \sum_{\mathbf{n} \setminus n_k} p(\mathbf{n}_{k-})F_k(\mathbf{n}_{k-}) - p(\mathbf{n}_{k+})(1 - F_k(\mathbf{n}_{k+}))$$

rearrange

$$\langle n_k \rangle = \sum_{\mathbf{n}} n_k p(\mathbf{n}) = \sum_{\mathbf{n} \setminus n_k} p(\mathbf{n}_{k+1})$$

$$= \sum_{\mathbf{n} \setminus n_k} p(\mathbf{n}_{k-1}) F_k(\mathbf{n}_{k-1}) + p(\mathbf{n}_{k+1}) F_k(\mathbf{n}_{k+1})$$

$$= \langle F_k(\mathbf{n}) \rangle$$

mean activity of k = mean of gain function $m_k = \langle n_k \rangle = \langle F_k(\mathbf{n}) \rangle$

July 21st, Decatur, Atlanta

Equation for correlations

same approach as for the mean: multiply equation of equilibrium probability flux by $n_k n_l$, sum over all states

$$0 = \sum_{\mathbf{n}} n_k n_l \sum_{i=1}^{N} \underbrace{(2n_i - 1)}_{1 \text{ if } n_i = 1, -1 \text{ else}} (p(\mathbf{n}_{i-})F_i(\mathbf{n}_{i-}) - p(\mathbf{n}_{i+})(1 - F_i(\mathbf{n}_{i+})))$$

only two terms remain, where i = k or i = l, rearranging yields

$$c_{kl} = \frac{1}{2} \langle F_k(\mathbf{n}) \delta n_l \rangle + \frac{1}{2} \langle F_l(\mathbf{n}) \delta n_k \rangle$$

with $\delta n_i = n_i - \langle n_i \rangle$

correlations are caused by fluctuations δn_l affecting the activation function of neuron k and vice versa

July 21st, Decatur, Atlanta

Correlation by a single connection

- neuron post receives input from network
- in addition input from another, independent neuron pre
- correlation due to the single connection pre \rightarrow post $c_{\text{post,pre}} = \frac{1}{2} \langle F_{\text{post}}(\mathbf{n}) \delta n_{\text{pre}} \rangle$
- second term $\langle F_{\rm pre}({\bf n})\delta n_{\rm post}\rangle$ vanishes, because post has no effect on pre

July 21st, Decatur, Atlanta

Correlation by a single connection

- input from network to pre in mean-field approximation is a Gaussian noise $x \sim \mathcal{N}(\mu, \sigma^2)$
- total input to neuron post is $h_{\text{post}} = x + Jn_{\text{pre}}$

$$c_{\text{post,pre}} = \frac{1}{2} \langle H(x + Jn_{\text{pre}}) \delta n_{\text{pre}} \rangle_{x,n_{\text{pre}}} \\ = \frac{1}{2} \langle H(x + J)n_{\text{pre}} \delta n_{\text{pre}} + H(x)(1 - n_{\text{pre}}) \delta n_{\text{pre}} \rangle_{x,n_{\text{pre}}} \\ = \frac{1}{2} \langle H(x + J) - H(x) \rangle_{x} \langle n_{\text{pre}} \delta n_{\text{pre}} \rangle_{n_{\text{pre}}}$$

• fluctuations of pre neuron drive correlations $c \propto autocovariance \langle n_{\rm pre} \delta n_{\rm pre} \rangle = \langle \delta n_{\rm pre} \delta n_{\rm pre} \rangle = a_{\rm pre}$

Ginzburg & Sompolinsky (1994)

July 21st, Decatur, Atlanta

Susceptibility

- J has small impact compared to 'noise' from network $x \sim \mathcal{N}(\mu, \sigma)$
- Taylor expansion in J

$$\begin{array}{rcl} \langle H(x+J) - H(x) \rangle_{x} &=& S(\mu,\sigma)J + O(\epsilon^{2}) \\ S(\mu,\sigma) &=& \left. \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} \langle H(x+\epsilon) - H(x) \rangle_{x} \\ &=& \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\mu^{2}}{2\sigma^{2}}} \end{array}$$

- susceptibility S quantifies to linear order sensitivity post's activity to small fluctuation in input
- susceptibility $S(\mu, \sigma)$ depends on *neuron properties* and on *network state* (μ, σ)

July 21st, Decatur, Atlanta

Correlation by a single connection: comparison to simulation

$$egin{aligned} c_{ ext{post,pre}} &=& rac{J}{2} S(\mu,\sigma) \; \pmb{a}_{ ext{pre}} \ \pmb{a}_{ ext{pre}} &=& \langle n_{ ext{pre}}
angle (1-\langle n_{ ext{pre}}
angle) \end{aligned}$$

- *a*_{pre} strength of pre fluctuation
- $\frac{J}{2} S(\mu, \sigma)$ transmission of fluctuation from input to output
- theory (red dot) and simulation (black curve) agree

Ginzburg & Sompolinsky 1994, simulated with NEST, www.nest-initiative.org

July 21st, Decatur, Atlanta

Correlations in a recurrent network

$$c_{lk} = \frac{1}{2} \langle F_l(\mathbf{n}) \delta n_k \rangle + \frac{1}{2} \langle F_k(\mathbf{n}) \delta n_l \rangle$$

 complicated, because in (*F_k*(**n**) *δn_l*) neuron *l* might be correlated with any other neuron in **n** projecting to target *k*

July 21st, Decatur, Atlanta

Correlations in a recurrent network

first term: repeating for $i\neq j\rightarrow$ third order correlation, neglected

$$\langle [H(x+J_{lj})-H(x)] \rangle_x \langle n_j \delta n_k \rangle_{\mathbf{n}} \simeq S(\mu,\sigma) J_{lj} c_{jk}$$

second term: independent of j; j was chosen arbitrarily, so

$$c_{lk} = \frac{S(\mu, \sigma)}{2} \sum_{j} (J_{kj}c_{jl} + J_{lj}c_{jk}) \xrightarrow{c_{kj}} J_{lj} \xrightarrow{J_{lj}} J_{lk} \xrightarrow{l} C_{lk}$$

$$c_{ii} = a_{i}$$
autocovariances a_{i} drive cross-covariances c_{lk}
Moritz Helias

slide 39

Population-averaged correlations

- often the correlation averaged over many pairs is interesting
- introduce avg. correlation $c_{ee} = \frac{1}{N_e^2} \sum_{k \neq l \in \mathcal{E}} c_{kl}$ (other 3 pairings analogous)
- inserting $c_{kl} = \frac{S(\mu,\sigma)}{2} \sum_{i} (J_{ki}c_{il} + J_{li}c_{ik})$ we obtain

$$c_{ee} = \frac{K J S(\mu, \sigma)}{2} \left(\frac{2}{N} a + 2c_{ee} - 2\gamma g c_{ie} \right)$$

$$c_{ii} = \frac{K J S(\mu, \sigma)}{2} \left(-\frac{2}{N} g a - 2\gamma g c_{ii} + 2c_{ei} \right)$$

$$c_{ei} = c_{ie} = \frac{1}{2} (c_{ee} + c_{ii})$$

$$a = (1 - \langle n \rangle) \langle n \rangle$$

can be solved by elementary methods

Ginzburg & Somplolinsky 1994

July 21st, Decatur, Atlanta

Population-averaged correlations: comparison to simulation

- binary neuron implemented in NEST www.nest-initiative.org
- implementation uses exponentially distributed update intervals
- theoretical prediction (red dot) agrees with simulation
- strength of correlations depends on type of neuron (black: c_{ee}, gray c_{ii}, light gray c_{ei})

July 21st, Decatur, Atlanta

The balanced condition revisited

- three populations α ∈ {E, I, X} of N neurons each
- finite, external population
- random connection propbability p
- shared external sources
- balanced condition fixes population averaged activities m_{lpha}
- effective coupling from pop β to neuron in α is

$$j_{\alpha\beta} = K J_{\alpha\beta} \qquad K = pN$$

- mean input to neuron of population α must approx. cancel

$$h_{lpha} = \sum_{eta} j_{lphaeta} m_{eta} \simeq 0$$

van Vreeswijk & Sompolinsky (1996), Amit & Brunel (1997), Renart et al. (2010)

July 21st, Decatur, Atlanta

Fast tracking – balance on a fast time scale

- cancellation of mean input approx determines rates
- observation: cancelation on input side also holds on fast time scale

$$\delta h_{lpha} = \sum_{eta} j_{lphaeta} \delta n_{eta} \simeq 0$$

• imposes relation between population fluctuations $\delta n_{\alpha} = \frac{1}{N} \sum_{i \in \alpha} n_i - m_{\alpha}$ Renart et al. (2010)

July 21st, Decatur, Atlanta

Population fluctuations – population averaged correlations

• population fluctuations $\delta n_{\alpha} = \frac{1}{N} \sum_{i \in \alpha} \delta n_i$

$$\begin{split} \langle \delta n_{\beta} \delta n_{\gamma} \rangle &= \frac{1}{N^2} \sum_{i \in \beta, j \in \gamma} \langle \delta n_i \delta n_j \rangle \\ &= \delta_{\beta\gamma} \frac{1}{N^2} \sum_{i \in \beta} \langle \delta n_i^2 \rangle + \frac{1}{N^2} \sum_{i \in \beta, j \in \gamma, i \neq j} \langle \delta n_i \delta n_j \rangle \\ &= \delta_{\beta\gamma} \frac{1}{N} a_{\beta} + c_{\beta\gamma} \end{split}$$

- are linked to average autocovariance a_β and pairwise averaged cross covariance $c_{\beta\gamma}$

July 21st, Decatur, Atlanta

Suppression of input correlation in balanced state

- observation: balance condition also holds approximately on fast time scale, $\delta h\simeq 0$

$$0\simeq \langle \delta h_{\alpha}^{2} \rangle = \sum_{\beta\gamma} j_{\alpha\beta} j_{\alpha\gamma} \langle \delta n_{\beta} \delta n_{\gamma} \rangle$$

• with previous result $\langle \delta n_{\beta} \delta n_{\gamma} \rangle = \delta_{\beta\gamma} \frac{1}{N} a_{\beta} + c_{\beta\gamma}$ and $j_{\alpha\beta} = J_{\alpha\beta} K = J_{\alpha\beta} p N$

$$0 \simeq \langle \delta h_{lpha}^2
angle = pK \sum_{eta} J_{lphaeta}^2 a_{eta} + K^2 \sum_{eta\gamma} J_{lphaeta} J_{lpha\gamma} c_{eta\gamma}$$

July 21st, Decatur, Atlanta

Suppression of input correlation in balanced state

July 21st, Decatur, Atlanta

Does fast tracking determine correlations?

- cancellation $\delta h_{\alpha} \simeq 0$ relates population fluctuations δn_{α}

Hertz et al 2010, Renart et al. 2010

July 21st, Decatur, Atlanta

Does fast tracking determine correlations?

 apply connection between population fluctuation and auto-/crosscovariance

$$\langle \delta n_{\beta} \delta n_{\gamma} \rangle = \delta_{\beta\gamma} \frac{1}{N} a_{\beta} + c_{\beta\gamma} \qquad \langle \delta n_{X}^{2} \rangle = \frac{a_{X}}{N}$$

use fast tracking condition

$$\begin{pmatrix} \delta n_E \\ \delta n_I \end{pmatrix} = \begin{pmatrix} A_E \\ A_I \end{pmatrix} \delta n_X$$

$$c_{\alpha\alpha} = A_{\alpha}^{2} \frac{a_{X}}{N} - \frac{a_{\alpha}}{N}$$
$$c_{\alpha\beta} = A_{\alpha} A_{\beta} \frac{a_{X}}{N}$$

Renart et al. 2010

July 21st, Decatur, Atlanta

Two components of correlations: intrinsic fluctuations and external drive

$$2c_{\alpha\beta} = S\left(\sum_{\gamma \in \{E,I,X\}} (j_{\alpha\gamma}c_{\gamma\beta} + j_{\beta\gamma}c_{\gamma\alpha}) + \frac{1}{N}j_{\alpha\beta}a_{\beta} + \frac{1}{N}j_{\beta\alpha}a_{\alpha}\right)$$

Ginzburg & Sompolinsky (1994)

$$A\begin{pmatrix} c_{EE} \\ c_{EI} \\ c_{II} \end{pmatrix} = B\begin{pmatrix} \frac{a_E}{N} \\ \frac{a_I}{N} \end{pmatrix} + C\begin{pmatrix} c_{EX} \\ c_{IX} \end{pmatrix}$$
$$D\begin{pmatrix} c_{EX} \\ c_{IX} \end{pmatrix} = E\frac{a_X}{N}$$

- 2 source terms drive covariance: external a_X and intrinsic fluctuations a_E, a_I
- covariance has scale 1/N compared to autocovariance July 21st, Decatur, Atlanta Moritz Helias

Cancellation condition constrains correlations

good approximation of simulated correlations

 correlation structure constrained by cancellation in input July 21st, Decatur, Atlanta

Summary

- correlations can be understood analytically in binary networks
 - mean field solution determines 'working point' (rates)
 - fluctuations around working point accounted for to linear order
 - recurrent equation relating auto- and crosscorrelations
- balance in networks \equiv suppression on input correlation
- constrains, but does not determine correlation structure
- correlation structure obeys cancelation condition
- correlations driven by two 'sources'
 - autocovariance of neurons within the network
 - autocovariance of external drive

Further reading

- I Ginzburg, H Sompolinsky (1994) Theory of correlations in stochastic neural networks Phys Rev E 50 (4)
- Amit & Brunel (1997) Model of global spontaneous sctivity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex 7: 237–252
- C A van Vreeswijk and H Sompolinsky (1998) Chaotic Balanced State in a Model of Cortical Circuits. Neural Comp. 10:1321-1372.
- M A Buice, J D Cowan, C C Chow (2010) Systematic fluctuation expansion for neural network activity equations Neural Comput 22, 377–426
- J Hertz, Cross-Correlations in High-Conductance States of a Model Cortical Network, Neural Computation 22, 427–447
- A Renart, J De La Rocha, L Hollander, N Parga, A Reyes, KD Harris (2010) The Asynchronous state in cortical circuits Science 327, 587 Science 2010

How to treat correlations in spiking networks?

- determine state of network in mean-field theory
- linearization of neural response around working point
- map to equivalent linear system
- average
 - either actitivity over populations
 - or pairwise correlations over equivalent pairs
- solve resulting (recurrent) equation in frequency domain

Leaky integrate-and-fire dynamics

$$egin{aligned} & & au_m rac{dV_i(t)}{dt} + V_i(t) &= RI_i(t) \ & R\left(au_s rac{dI_i(t)}{dt} + I_i(t)
ight) &= & au_m \sum_{j=1}^N J_{ij} s_j(t-d) \equiv b_i(t) \ & ext{ if } V > V_ heta & ext{then } V \leftarrow V_r, ext{ spike} \end{aligned}$$

Fourcaud & Brunel (2002)

neuron *i* spikes at time points t_i^k , "spike train":

$$s_i(t) = \sum_k \delta(t-t_i^k)$$

we aim to understand correlations between spike trains

$$egin{array}{rcl} c_{ij}(au) &=& \langle \delta s_i(t+ au) \delta s_j(t)
angle \ \delta s_i(t) &=& s_i(t) - \langle s_i
angle \end{array}$$

July 21st, Decatur, Atlanta

Homogeneous random network

- $N \text{ exc.}, \gamma N \text{ inh. neurons}$
- identical internal dynamics
- random connectivity, K exc inputs, γK inh inputs
- amplitude J of exc synapse,
 -gJ of inh synapse
- identical statistics of summed input to each neuron suggests equal rate r of all neurons

$$b_{i}(t) = \tau_{m} \sum_{j} J_{ij} s_{j}(t)$$

= $\tau_{m} J \sum_{\substack{j \in \text{exc. srcs} \\ K}} s_{j}(t) - \tau_{m} g J \sum_{\substack{k \in \text{inh. srcs} \\ \gamma K}} s_{k}(t) + \tau_{m} J s_{\text{ext.}}(t)$

Amit & Brunel 1997, Brunel & Hakim 1999, Brunel 2000 July 21st, Decatur, Atlanta Moritz Helias

Mean-field solution: closure assumption

- population average in network $\nu(t) = \frac{1}{N(1+\gamma)} \sum_{i} s_i(t)$
- homogeneity: all neurons $s_j(t)$ have same rate u(t)
- assume vanishing correlation:
 sum of K Poisson processes with rate ν = Poisson, rate Kν

• mean
$$K\nu$$
 = variance $K\nu$

• diffusion approximation $J \ll \theta$ $b(t) \simeq \mu + \sigma \xi(t)$

with

$$\mu = \tau_m J K (1 - \gamma g) \nu + J \nu_{\text{ext.}}$$

$$\sigma = J \sqrt{\tau_m K (1 + \gamma g^2) \nu} + \tau_m \nu_{\text{ext.}}$$

Σ 10 E 0 E 0 0 20 40 ν(Hz)

 $\xi(t) =$ unit var. Gaussian white noise Amit & Brunel 1997, Brunel & Hakim 1999, Brunel 2000

July 21st, Decatur, Atlanta

Mean-field solution: self-consistent rate

in diffusion limit, firing rate of LIF neuron can be calculated

Siegert 1954, Brunel 2000, Brunel Fourcaud 2003, Moreno Bote et al. 2006

July 21st, Decatur, Atlanta

Phase diagram

- several states exist
- phase diagram can be obtained by perturbative methods + stability analysis
- here focus on asynchronous irregular activity similar to in-vivo

Brunel 2000 July 21st, Decatur, Atlanta

Linearization

spike train: functional $s_i(t) = G_t^i(\mathbf{s})$ depends on past spikes $\mathbf{s}(t'), t' < t$

$$G_t^i(\mathbf{s}) = G_t^i(\mathbf{s} \setminus s_j) + \int_{-\infty}^t rac{\partial G_t^i(\mathbf{s})}{\partial s_j(t')} s_j(t') dt'$$

with the functional derivative defined as

$$\frac{\partial G_t^i(\mathbf{s})}{\partial s_j(t')} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(G_t^i(\mathbf{s} + \epsilon \mathbf{e}_j \delta(\circ - t') - G_t^i(\mathbf{s}) \right) \equiv h_{ij}(\mathbf{s} \backslash s_j, t, t')$$

- small perturbation by single spike of neuron j
- response s_i(t) to first order linear in perturbation

Pernice et al. 2011, 2012, Trousdale et al. 2012, Tetzlaff et al. 2012

July 21st, Decatur, Atlanta

Relation to spike-triggered average

Linearized convolution equation for correlations

for t > u

$$egin{aligned} c_{ik}(t,u) &= \langle s_i(t)\,\delta s_k(u)
angle = \langle G_t^i(\mathbf{s})\,\delta s_k(u)
angle \ &= \langle G_t^i(\mathbf{s}ackslash s_j)\,\delta s_k(u)
angle \ &+ \int_{-\infty}^t \langle h_{ij}(\mathbf{s}ackslash s_j,t,t')\,s_j(t')\delta s_k(u)
angle \ dt' \end{aligned}$$

- first term: functional independent of s_j
- second term: expansion for s_l causes third order terms $s_l s_j s_k$ neglected here \rightarrow assumption of independence of h_{ij} and s_j, s_k
- choice j was arbitrary, so to linear order

$$c_{ik}(t,u) \simeq \sum_{j} \int_{-\infty}^{t} \langle h_{ij}(\mathbf{s} \setminus s_{j}, t, t') \rangle c_{jk}(t', u) dt'$$

July 21st, Decatur, Atlanta

Properties of the response kernel

 average over remaining inputs s\s_j: replace by equivalent Gaussian noise ⟨⟩_{s\si} → ⟨⟩_{x∼N(µ,σ)}

$$h_{ij}(t,t')\simeq \lim_{\epsilon o 0}rac{1}{\epsilon}\left\langle G^i_t(x+\epsilon J_{ij}\delta(\circ-t'))-G^i_t(x)
ight
angle_x$$

- linear approximation of neuron j's influence on neuron $i \rightarrow$ impulse response
- stationarity: kernel only depends on time difference $h_{ij}(t t')$
- step response $w_{ij}(t) = \int_{-\infty}^{\infty} h_{ij}(t') \ \theta(t-t') \ dt' = \int_{0}^{t} h_{ij}(t') \ dt'$
- dc susceptibility w_{ij}(∞) ≡ change of equilibrium rate due to step in input j after long time

$$H(\infty) = \nu(\mu + J_{ij}, \sigma + J_{ij}^2) - \nu(\mu, \sigma)$$

Helias et al. (2010), Tetzlaff et al. (2012) July 21st, Decatur, Atlanta

Interpretation of the kernel

July 21st, Decatur, Atlanta

Moritz Helias

slide 64

Equivalent linear dynamics

spiking dynamics:

$$\langle \delta s_i \rangle = 0$$

$$c_{ij}(\tau) = \langle \delta s_i(t+\tau) \delta s_j \rangle = \begin{cases} \sum_k h_{ik} * (c_{kj} + \delta_{jk} a_j)(\tau) & i \neq j \\ a_i(\tau) = \delta(\tau) \nu_i & i = j \end{cases}$$

continuous, linear dynamics equivalent up to second moment:

$$egin{aligned} y_i(t) &= \sum_k (h_{ik} * y_k)(t) + x_i(t) \ &\langle x_i(t)
angle &= 0 & \langle x_i(t+ au) x_j(t)
angle = \delta(au) \delta_{ij}
u_i \ &c_{ij}(au) &= \langle y_i(t+ au) y_j(t)
angle \end{aligned}$$

fulfills same convolution equation

Lindner et al. 2005, Pernice et al. 2012, Trousdale et. al 2012, Tetzlaff et al. 2012

July 21st, Decatur, Atlanta

Population averaged system

introduce population averaged activity

$$y_{\mathsf{E}} = \frac{1}{N} \sum_{i \in \mathcal{E}} y_i$$
 $y_{\mathsf{I}} = \frac{1}{\gamma N} \sum_{i \in \mathcal{I}} y_i$

effective coupling: number of synapses × weight

July 21st, Decatur, Atlanta

Schur transformation exposes negative feedback

July 21st, Decatur, Atlanta

Negative feedback cancels fluctuations

fluctuation suppression has same cause in E-I as in I networks July 21st, Decatur, Atlanta Moritz Helias

Small fluctuations \leftrightarrow small correlations

small population fluctuations of population $\boldsymbol{\alpha}$

$$egin{aligned} \langle y_{lpha}^2
angle &= rac{1}{N_{lpha}^2} \sum_{i,j} \langle y_i y_j
angle \ &= rac{1}{N_{lpha}} a_{lpha} + c_{lpha lpha} \end{aligned}$$

imply small pairwise averaged correlations $c_{\alpha\alpha}$ at fixed autocorrelation a_{α}

$$egin{aligned} &a_lpha = rac{1}{N_lpha}\sum_i \langle y_i y_i
angle \ &c_{lpha lpha} = rac{1}{N_lpha^2}\sum_{i
eq j} \langle y_i y_j
angle \end{aligned}$$

Tetzlaff et al. (2012)

July 21st, Decatur, Atlanta

Pairwise correlations

$$c_{ij}(\tau) = \sum_{k \neq j} w_{ik} h * (c_{kj} + \delta_{kj} \nu_j \delta(\circ))$$

average correlation between excitatory pairs of neurons:

$$c_{\mathsf{EE}}(\tau) = \frac{1}{N^2} \sum_{i \neq j \in \mathcal{E}} c_{ij}(\tau) \qquad c_{\mathsf{II}}, c_{\mathsf{EI}}, c_{\mathsf{IE}} \dots$$

$$\mathbf{c} = \begin{pmatrix} c_{\mathsf{EE}} & c_{\mathsf{EI}} \\ c_{\mathsf{IE}} & c_{\mathsf{II}} \end{pmatrix} = \underbrace{\mathcal{K}w \begin{pmatrix} 1 & -\gamma g \\ 1 & -\gamma g \end{pmatrix}}_{\tilde{\mathbf{W}}} h * \mathbf{c} + r \frac{\mathcal{K}w}{N} \begin{pmatrix} 1 & -g \\ 1 & -g \end{pmatrix} h * \delta$$
$$= \underbrace{\tilde{\mathbf{W}}h * \begin{pmatrix} \mathbf{c} + \frac{\nu}{N} \begin{pmatrix} 1 & 0 \\ 0 & 1/\gamma \end{pmatrix}}_{\mathbb{E}\mathbf{D}} \delta \end{pmatrix}_{\mathsf{ratur}} \delta$$

July 21st, Decatur, Atlanta

Averaged correlations \leftrightarrow correlation of average

 $\mathbf{c} = \tilde{\mathbf{W}}h * \underbrace{(\mathbf{c} + \mathbf{D}\delta)}_{\equiv \bar{\mathbf{c}}}$ introduce $\bar{\mathbf{c}} = \mathbf{c} + \mathbf{D}\delta$

 $\bar{\boldsymbol{c}}$ equivalent to population fluctuations

$$\begin{split} \bar{c}_{\mathsf{EE}}(\tau) &= \underbrace{c_{\mathsf{EE}}(\tau)}_{i \neq j} + \underbrace{\frac{\nu}{N} \delta(\tau)}_{i=j} \qquad \mathsf{a}_{\mathsf{E}}(\tau) \simeq \frac{\nu}{N} \delta(\tau) \\ &\simeq \frac{1}{N^2} \sum_{i,j \in \mathcal{E}} \langle y_i(t+\tau) y_j(t) \rangle = \langle y_{\mathsf{E}}(t+\tau) y_{\mathsf{E}}(t) \rangle \end{split}$$

$$\begin{split} \mathbf{Y}(\omega) &= \tilde{\mathbf{W}} H(\omega) \mathbf{Y}(\omega) + \sqrt{\mathbf{D}} \mathbf{X}(\omega) \\ &= \mathbf{P}(\omega) \sqrt{\mathbf{D}} X(\omega) \quad \text{with} \quad \mathbf{P}(\omega) = (\mathbf{1} - H(\omega) \tilde{\mathbf{W}})^{-1} \end{split}$$

$$\bar{\mathbf{C}}(\omega) = \langle \mathbf{Y}(\omega) \mathbf{Y}^{\mathsf{T}}(-\omega) \rangle = \mathbf{P}(\omega) \mathbf{D} \mathbf{P}^{\mathsf{T}}(-\omega)$$

Hawkes (1971), Pernice et al. (2011, 2012), Trousdale et al. (2012), Tetzlaff et al. (2012)

July 21st, Decatur, Atlanta

Structure of correlations

- $C_{\mathsf{EE}} > C_{\mathsf{EI}} > C_{\mathsf{II}}$
- due to direct
 connections: A
 'drives' C
- suppresssion by feedback $(1 L)^{-1}$

Tetzlaff et al. (2012)

$$C_{\mathsf{EE}/\mathsf{II}} = \frac{C_{\mathsf{shared}}}{(1-L)^2} + \frac{2KwA}{1-L} \begin{cases} \frac{1}{N_{\mathsf{E}}} & \text{for EE} \\ \frac{-\gamma g}{N_{\mathsf{I}}} & \text{for II} \end{cases}$$
$$C_{\mathsf{EI}} = \frac{1}{2} (C_{\mathsf{EE}} + C_{\mathsf{II}}) \quad \text{with} \quad C_{\mathsf{shared}} = Kw^2 \left(\frac{1}{N_{\mathsf{E}}} + \frac{\gamma g^2}{N_{\mathsf{I}}}\right) A.$$

What about infinite brains?

• scaling: $w \propto 1/N \propto 1/K$

- adjust external noise to maintain working point (fluctuations)
- negative compound feedback: $Kw(1 \gamma g) \equiv L = \text{const.}$
- asymmetry remains in limit of infinitely large networks

Helias et al. (submitted)

July 21st, Decatur, Atlanta

Cancelation of input correlation

- $C_{\text{shared}} > 0, C_{\text{corr}} < 0$ partially cancel
- El network: $C_{EE} > C_{EI} > C_{II} \Rightarrow C_{corr} < 0$
- I network: $C_{II} < 0$, same cancelation

Tetzlaff et al. 2012 July 21st, Decatur, Atlanta

July 21st, Decatur, Atlanta

Moritz Helias

slide 75

Correlations in structured networks

$$\mathbf{C}(\omega) = \langle \mathbf{Y}(\omega)\mathbf{Y}(-\omega) \rangle = \mathbf{P}(\omega) \mathbf{D} \mathbf{P}^{T}(-\omega)$$

ropagator $\mathbf{P}(\omega) = [\mathbf{1} - \underbrace{\mathcal{H}(\omega)\mathbf{W}}_{-1}]^{-1}$ can be expanded

iff absolute value of spectrum is bounded by unity

$$\mathbf{W}\mathbf{v}_i = \lambda_i \mathbf{v}_i \qquad \text{iff } |H(\omega)\lambda_i| \quad < 1 \ \forall \ i, \omega$$

 $G(\omega)$

$$ightarrow \mathbf{P}(\omega) = \sum_{n=0}^{\infty} \mathbf{G}(\omega)^n$$

$$\mathbf{C}(\omega) = \sum_{n,m} \mathbf{G}^n(\omega) \mathbf{D} (\mathbf{G}^T)^m(-\omega)$$

Pernice et al. (2011), (2012), Trousdale et al. (2012)

July 21st, Decatur, Atlanta

р

Correlations in structured networks

Trousdale et al. 2012

July 21st, Decatur, Atlanta

Contribution of first order term in random networks

- covariance between pairs fluctuates around population mean
- mostly due to first order terms $\mathbf{GD}, \mathbf{DG}^{\mathsf{T}}$ (direct connections)

Trousdale et al. 2012

July 21st, Decatur, Atlanta

Delays, oscillations, temporal shape ...

investigating frequency dependence of $C(\omega)$ explains

- delayed synaptic coupling \rightarrow fast global oscillations $_{\textsc{Brunel 2000}}$
- temporal shape of correlation functions
- scaling invariant properties of network dynamics

July 21st, Decatur, Atlanta

Summary

- qualitatively similar approach as for binary neurons: mean-field solution, linearization, Fourier transform
- equivalence of linearized LIF, linear Poisson, linear rate equations
- correlations smaller than expected by shared input
- suppression of correlations \equiv suppression of population fluctuations
- negative feedback is underlying reason $$\curvearrowright$$ same phenomenon in E-I and in I networks
- obserable as cancellation of input correlations
- structured networks: expansion of propagator yields intuition

Further reading

- Amit & Brunel (1997), Model of global spontaneous sctivity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex 7: 237–252
- N Brunel and V Hakim (1999), Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Computation, 11, 1621–1671
- N Brunel (2000), Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J Comput Neurosci. 8(3):183-208.
- N Fourcaud, N Brunel (2002), Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons. Neural Comput 14, 2057–2110
- A G Hawkes (1971), Point spectra of some mutually exciting point processes Royal Stat. Soc. 33(3): 438-443
- M Helias, M Deger, S Rotter, M Diesmann (2010), Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units. PLoS Comput Biol 6(9): e1000929. doi:10.1371/journal.pcbi.1000929

PLoS Comp Biol (in press), arXiv:1204.4393v1 [q-bio.NC]

- J Trousdale, Y Hu, E Shea-Brown, and K Josić (2012), Impact of Network Structure and Cellular Response on Spike Time Correlations. PLoS Comput Biol 8(3), e1002408.
- V Pernice, B Staude, S Cardanobile, S Rotter (2011), How Structure Determines Correlations in Neuronal Networks.

PLoS Comput Biol 7(5): e1002059. doi:10.1371/journal.pcbi.1002059

 V Pernice, B Staude, S Cardanobile, S Rotter (2012), Recurrent interactions in spiking networks with arbitrary topology.

Phys Rev E 85, 031916

 M Helias, T Tetzlaff, M Diesmann (2012), Echoes in correlated neural systems (submitted), arXiv:1207.0298v2 [q-bio.NC]

July 21st, Decatur, Atlanta