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Cortical spiking variability:
non-reproducible spike irains
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Cortical spiking variability:
non-reproducible spike irains
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Fano factor, F =Var(N)/<N>~1.2



Cortical spiking variability:
non-reproducible spike trains
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Correlated activity
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This is why you should care

« variability and correlations set fundamental limits of how much information
can be extracted from the neuronal responses

Zohary et al, Nature, 1994

* how the observed variability and correlations arise from the underlying
neuronal dynamics is largely unknown

Ginzburg and Sompolinsky, Phys. Review E, 1994
Moreno-Bote and Parga, Phys. Review Letters, 2006
de la Rocha et al, Nature, 2007

Kriener et al, N. Computation, 2008

Kumar et al, N. Computation, 2008

Renart et al, Science, 2010

Hertz, N. Computation, 2010



This is why you should care

« correlations open the door to estimate functional connectivity between
neurons

Aertsen et al, J. Neurophys, 1989
Schneidman et al, Nature, 2006
Pillow et al, Nature, 2008

Cocco et al, PNAS, 2009

« variability and correlations might indicate the type of neuronal
computations carried out by neuronal circuits

Abeles, Book: Corticonics, 1991

Softky, Current Opi. Neurobiology, 1995
Shadlen and Newsome, J. of Neurosci., 1998
Diesmann et al, Nature, 1999



Outline

Information limits set by neuronal correlations (an example)

Firing rate and variability in LIF neurons with fast and slow synapses
(FPE formalism and solutions)

Correlation transfer in LIF neurons with fast and slow synapses (FPE
and approximate solutions)

Review of literature & main results about correlation transfer:

Neurons are sensitive to input correlations (strength and correlation time;
Salinas and Sejnowski, J. of Neurosci., 2000; Moreno-Bote et al, Phys. Review Letters,

2002)

Output correlation is lower than input correlation in spiking neurons (Moreno-Bote
and Parga, Phys. Review Letters, 2006)

Firing rate and correlation coefficients are not independent (de la Rocha et al,
Nature, 2007)

Open guestions



Outline

* Information limits set by neuronal correlations (an example)



Signal/Noise limits induced by correlations

Zohary et al, 1994
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 In homogenous neuronal populations, correlations are deleterious
* Whether it is possible to decorrelate while keeping firing rate and variability

constant is under investigation



Outline

« Firing rate and variability in LIF neurons with fast and slow synapses
(FPE formalism and solutions)



A Golden Problem:;
Input-Output relationship
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The problem can be faced in the statistical sense: average quantities

Vin Vout

I:N,in F

N ,out

pin /Oout




A Golden Problem:;
Input-Output relationship




Firing rate for a leaky integrate & fire (LIF)
neuron with instantaneous synapses
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Figure 2: Mean firing rate v (left), CV (middle), and product vCV? (right) of the
LIF neuron as a function of the mean and standard deviation of the depolariza-
tion. Parameters: Vi, = 20 mV, Ve = 10 mV, 1, = 10 ms, and 7, = 2 ms.

Burkitt, Biol Cybern, 2006



Rate with non-instantaneous synapses
Fast neuronal dynamics

[a—i(aj —€z) + €2Lz] P=0

> = \/Tm/Ts stationary FPE
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2(t)

In the long synaptic time scale limit 7, = 7,
we treat  — /7, /-, as a small parameter

This limit is useful in the high conductance regime
(Destexhe et al.,Nat.Rev.Neurosc. 2003)
or when slow filters (NMDA, GABAg, etc) are important

0 dZ _22/2

firingrate v= fo, N

£
w0 1(2) = 7, In ( 5 EZ)

0 —ez

O = V2O — ut)/0 /T and [ = V2(H — put)/0 /T

Moreno-Bote and Parga, Phys Rev. Lett, 2004
Moreno-Bote and Parga, Neural Computation, 2010



Rate with non-instantaneous synapses

1

At zero-th order —@OPO =0 . y(z) — -
Tlog (2=
constant drift mtOy O—cx
Ieak

Firing rate V= /d @@

The only approx. is 1 2 1,



Rate with non-instantaneous synapses

adiabatic rate
80
25f % Iz 5
(AEgIIpiis Eyiziity fi
20 i Ly
’ -'linll|”“!i“"'|lll' '
CRE I .,.*-""
g 10'—-—-—:“—:1'::#%_" e
-
II}'I.T!# —MIID EID SID 4IG
T, (ms)
here 1, = 1, = 10ms
I: T=1/v =|
This is surprising because here z is not
constant during an ISI of typical duration
T =100-200 ms. z(t)
<+——>



Rate with non-instantaneous synapses

<Z, constant

Tm®X = —X + €2
1
v(z) = =——\ +— instantaneous firing rate
TmlOg (é)ez)

temporal
average

v = /dzP(z) v(z) |«—firingrate

Why not T:/dzP(z)?

\

It does not do a very good job IS| for fixed z



Rate with non-instantaneous synapses
Fast synapses

In the short synaptic time scale limit 75 = 7,
we treat the inverse of ¢=/7,/7. as a small parameter

This limit is useful when AMPA receptors are abundant
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Brunel and Sergi, J theor Biol, 1998 . .
Fourcaud and Brunel, Neural Comput., 2002 Interpolating the fast and slow synaptic

Moreno-Bote and Parga, Phys Rev Lett, 2004 time scale limits



Outline

« Correlation transfer in LIF neurons with fast and slow synapses (FPE
and approximate solutions)



Correlations with non-instantaneous synapses
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Correlations with non-instantaneous synapses
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d. The linear approximation of the cross-correlation function for two LIF
I(1) neurons given in c is

neuanE
C(A) = D) + V() Cre(A), (2.62)
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Correlations with instantaneous synapses

Tm % = - Vi+ﬂ+6\/m(\/ l_céi(t)_'_ \/Eéc(t))
=+ 03 (V= e&i(t) + V&)

de la Rocha et al, Nature, 2007



Outline

* Review of literature & main results about correlation transfer:



Outline

* Review of literature & main results about correlation transfer:

1. Neurons are sensitive to input correlations (strength and correlation time;
Salinas and Sejnowski, J. of Neurosci., 2000; Moreno-Bote et al, Phys. Review Letters,

2002)



|. Correlated activity In primary auditory cortex
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@ Post-synaptic Neuron

V()

Vi(t) = —

- + I(t) Leaky Integrate-and-Fire neuron
m
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Temporal Correlatlons

Auto-correlations:
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l. Model. Spatial Correlations
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@ Post-synaptic Neuron
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. How to generate such a current?

= JEﬂ’TEUE—JpNIUI Cfcu?'-re-n.t(tr f!) — Ji' 6“ o IJ) —I_ ¢ e e

Why a simple representation of the current is required?
1. Generating the current in the way defined above is complex.

2. If the representation of the current is simple enough, it can
allow us to find an analytical solution in some limits.

3. It can be used to simulate neurons receiving correlated inputs.

4. It can be used to stimulate real neurons with current waves
mimicking correlated inputs.



Positive correlations Negative correlations
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|. Results. FPE and stationary response

The FPE associated to the equation for V and the current is
L Lz 2 () (9 I,-BZ

Lot e T a9 7
It can be solved in the long correlation time limit
C
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Vout = Yo +

A similar FPE is solved in the short correlation time limit
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|. Results. Stationary rate as a function of 1,
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The instantaneous firing rate of the neuron is exactly

o2(t) O [

out (t) = — = p— dwP(V,w,t)|y=
v t() \2/\4(31/ e u ( , W, )‘1 e

Changing Ji(t) will procude an instantaneous change in the rate

Whenthe correlation time becomes zero, it can be expressed as

2 t a
Vo (1) = _“eféf( )W f dwP(V, w. )y —o

\

Changing it will procude an instantaneous change in the rate

For short enough correlation times, the response has also to be very fast!



. Results. Rapid response to

Instantaneous changes of a
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l. ... In conclusion

1.

We have described the statistical properties of a current that
considers the acitivity of many correlated neurons.

This current has been generated using an auxiliary OU process.

The associated FPE to this current and to an IF neuron has
been solved in the limits of short and long correlation times.

These solutions predict the modulation of neuronal resposes
to variations of the parameters defining the correlated activity.

Changing the correlation magnitude of pre-synaptic populations
produces a very fast increase of the output firng rate.
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Figure 9 Effect of common inputl on response eovariance, The correla-
tion coefficient is plotted as a function of the fraction of shared excitatory
and shared inhibitory input to a pair of model neurons. Each pont was
obtained from 200 sec of simulated spike discharge using a variety of model
parameters {inputl spike rate, number of inputs, and barrier height). In
each simulation, the output spike rate was approximately the same as the
average of any one input (within a factor of ©0.25), The best fitting plane
through the origin is shown, A substantial degree of shared input is
required to achieve even modest correlation.

of shared excitatory and shared inhibitory connections affect the
correlation coefficient. Shared excitation has a greater impact,
because it can lead directly to a spike from both neurons.
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Figure 5. Effect of input correlations generated by common drive on the
firing rate and variability of the same balanced (B = 1) model neuron used
in Figure 4. For each data point, the output spike train was recorded for
30-90 sec of simulation time, and the mean rate and coefficient of variation
were computed from this segment. a, Mean output firing rate r,, as a
function of input rate rg, for four conditions. The continuous line indicates
uncorrelated mputs (e = 0, ¢, = 0), filled circles indicate correlations
between excitatory inputs only (¢, = 0.1, ¢, = 0), open circles indicate
correlations among inhibitory inputs only (¢z = 0, ¢, = 0.1), and dots
indicate all pairs equally correlated (¢, = 0.1, ¢, = (.1). b, CV}g of the
output spike trains as a function of input rate, computed from the same
simulations as in a; symbols have identical meaning. The dashed line marks
a CV,g, of 1, expected from a Poisson process. ¢, Mean output firing rate 7,
as a function of correlation strength, for a fixed input rate r, = 40
spikes/sec. Filled circles correspond to correlations between excitatory neu-
rons only (¢ varies along the x axis and ¢, = 0), open circles correspond to
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parameters {inputl spike rate, number of inputs, and barrier height). In
each simulation, the output spike rate was approximately the same as the
average of any one input (within a factor of ©0.25), The best fitting plane
through the origin is shown, A substantial degree of shared input is
required to achieve even modest correlation.

of shared excitatory and shared inhibitory connections affect the
correlation coefficient. Shared excitation has a greater impact,
because it can lead directly to a spike from both neurons.



Outline

* Review of literature & main results about correlation transfer:

2. Output correlation is lower than input correlation in spiking neurons (Moreno-Bote
and Parga, Phys. Review Letters, 2006)



2 [C(s)ds
N F?\rl/

4

Correlation coefficient:  p

1 Slow rise with slope

/ smaller than 1

To get p=0.1, neurons need
to share around 20% of their
input variability

correlation
®
0
I

- 1 1 )
O 0.5 1
6‘2/(52
[
input correlation, or
fraction of common noise

2 2 2
O = Ojqg —I—(TC




..
The correlation coefficient of the output of a pair of non-linear rate neurons
receiving correlated Gaussian noise is bounded by the correlation in the input

Lancaster, Biometrika, 1957



2 2
O-Cz <<1 O-CZ ~1
o ” o
sub- supra-
MNW//\\MM threshold threshold

-Asingle peak in both sub- and -Damped oscillatory profile
supra-threshold regimes in both regimes
-Width of the peak is approx. -Width is not simply related to t,




Outline

* Review of literature & main results about correlation transfer:

3. Firing rate and correlation coefficients are not independent (de la Rocha et al,
Nature, 2007)
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Outline

* Review of literature & main results about correlation transfer:
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Outline

* Review of literature & main results about correlation transfer:

1. Neurons are sensitive to input correlations (strength and correlation time;
Salinas and Sejnowski, J. of Neurosci., 2000; Moreno-Bote et al, Phys. Review Letters,

2002)

2. Output correlation is lower than input correlation in spiking neurons (Moreno-Bote
and Parga, Phys. Review Letters, 2006)

3. Firing rate and correlation coefficients are not independent (de la Rocha et al,
Nature, 2007)



Ouvutline

Information limits set by neuronal correlations (an example)

Firing rate and variability in LIF neurons with fast and slow synapses
(FPE formalism and solutions)

Correlation transfer in LIF neurons with fast and slow synapses (FPE
and approximate solutions)

Review of literature & main results about correlation transfer:

Neurons are sensitive to input correlations (strength and correlation time;
Salinas and Sejnowski, J. of Neurosci., 2000; Moreno-Bote et al, Phys. Review Letters,

2002)

Output correlation is lower than input correlation in spiking neurons (Moreno-Bote
and Parga, Phys. Review Letters, 2006)

Firing rate and correlation coefficients are not independent (de la Rocha et al,
Nature, 2007)

Open questions



Open questions

« The Fokker-Planck equation (FPE) for a pair of correlated neurons
remains unsolved exactly for all limits, except for one case
(however, very good approximations are available in some limits, as
described in this tutorial)

« How correlation transfer operates in more complex neuronal models
(e.g., Hodgkin & Huxley) is not known

* How correlation transfer depends on reciprocal connections is largely
unknown (but await to the 2" part of the tutorial)

* The relationship between correlations and information in a pair of
neurons remains unexplored



